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Abstract 

The machine learning techniques used for the purpose of classifying tool conditions. Using these techniques, we can choose the best 

classifier for time domain vibration and AE signature and evaluate the classification efficiency. The time domain signatures acquired at the 

first stage of the inquiry do not include the frequency data. These wavelet coefficients are used in machine learning techniques for tool 

condition classification. To determine the frequency content, the original AE and vibration signals are first converted from the time domain 

to the frequency domain using Fast Fourier Transform. The statistical data is derived from the frequency domain features of vibration and 

acoustic emission. improving the reliability of machine learning systems using sensor fusion technologies. Acoustic emission signals and 

vibrations are combined at the feature level to enhance the classification performance using Machine Learning algorithms. 
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Introduction 

Health care, quality of life, economic development, and 

other metrics are all improved thanks to micro components, 

which are essential to the goods' operation. Numerous 

industries, including aircraft, biomedicine, electronics, the 

environment, communications, automobiles, and more, rely 

on micro components. Research has shown that tool-based 

micromachining is one processing approach for creating 

micro components. According to Masuzawa and Tonshoff 

(1997) [1], Dornfeld et al. (2006) [2], and Jain (2010) [3], tool-

based micromachining is a mechanical cutting feature that 

allows for components of any size to have geometrically 

defined cutting edges that are smaller than 1 mm in size. 

Alting et al. (2003) [4] and Masuzawa (2000) [5] later 

adjusted the dimension range to 500 µm. Chae et al. (2005) 
[6], Rahman et al. (2006) [7], Asad et al. (2007) [8], and Liow 

(2009) [9] list micro milling, micro turning, micro drilling, 

and other tool-based micromachining operations. Machining 

various materials using tool-based micromachining provides 

many advantages, such as a greater material removal rate 

(MRR), better finish, reduced production cost, and so on. To 

guarantee dependability and reproducibility, researchers 

have lately shown a strong interest in producing micro 

components using tool-based mechanical micromachining 

procedures.  

The researchers have extensively used AE, ACC, and 

cutting force dynamometers for TCM, and they primarily 

analyse the signals in the time domain and frequency 

domain to correlate them with the condition of tool wear. 

Additionally, researchers have tried to use the discrete 

wavelet transform (DWT) method to examine the collected 

signals. The data was first demodulated into its component 

frequencies using the DWT method. In order to determine 

the process of tool wear, the decomposed signal proves to be 

quite beneficial. This study aims to monitor the tool 

condition during micro end milling of various materials, 

including aluminum copper, and steel (SAE 1017) alloys. It 

employs multiple sensors, including an AE, an ACC, and a 

cutting force dynamometer. The signals are processed in the 

time domain, frequency domain, and DWT. 

We need sensors that can identify process anomalies and 

start corrective action in order to deploy process monitoring 
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and control. Depending on the signal, several sensing and 

processing methods may be necessary for process 

monitoring. There is a range of dependability levels that 

each of these signals may provide about the process. 

Gathering data from all the signals that may be captured 

throughout the operation is essential for achieving optimal 

control. The term "data fusion techniques combine data 

from multiple sensors and related information from 

associated databases to achieve improved accuracy and 

more specific inferences than could be achieved by the use 

of a single sensor alone." This definition was given by Hall 

and Llinas [1997] [10] and is widely recognized in the field. 

The use of dynamometers, accelerometers, spindle power 

sensors, and acoustic emission sensors is common in tool 

condition monitoring. At the decision level, there is a fusion 

approach; at the feature level, there is another. Following 

the steps outlined in earlier chapters, a decision-level 

approach uses a tool condition monitoring system that 

makes use of one or more sensors to operate as an expert 

within its own feature space. Next, a meta-classification 

judgement is reached by pooling opinions using a majority 

vote method, which is better than fusing individual 

classifiers 

 

Literature Review 

Raja & Baskar (2020) [11] The ideal machining parameters 

for surface grinding, single-pass and multi-pass turning, and 

other operations were investigated by using three different 

evolutionary optimisation methods: SA, GA, and PSO. 

Several mathematical models were used to study the 

behavior of optimisation approaches. Particle swarm 

optimisation outperformed simulated annealing and genetic 

algorithm, according to the results. In addition, the global 

optimum solution is often found more quickly using the 

particle swarm optimisation approach. Using the algorithms 

on online systems for selecting optimal machining settings, 

all of the above methods may quickly find a global optimum 

solution on a desktop computer.  

Yang et al. (2019) [12] The optimal process parameters for 

the EDM process may be determined using a restricted 

multi-objective optimisation framework, as suggested by. 

Using experimental data, a counter-propagation neural 

network was used to develop the system model. The model 

was used to optimize the rate of material removal and 

minimise surface roughness via the use of a simulated 

annealing strategy all at once.  

Zain et al (2020a) [13] used the SA method to determine the 

best cutting circumstances for achieving a low surface 

roughness value. Radial rake angle, cutting speed, and feed 

are the primary cutting conditions. Following this, it was 

discovered that the minimum surface roughness could be 

reduced by 27%, 26%, and 50% utilizing the experimental 

sample data, regression modelling, and response surface 

methodology methodologies, respectively, when simulated 

annealing was used. 

Kuruvila and Ravindra (2021) [14] used the taguchi method 

and a genetic algorithm to find the best wire-EDM process 

parameters. Dimensional error, surface roughness, and 

material removal rate are the dependent variables in the 

multi-objective problem. The independent variables are 

pulse-on duration, current, pulse-off length, bed-speed, and 

flushing rate. The optimal process parameters were achieved 

by using the equal and distinct weighting systems.  

Palanisamy et al. (2017) [15], Minimizing machining time 

while considering restrictions such as surface roughness, 

cutting force, tool life, and amplitude of vibration in end 

milling operations was shown by. The convergent results 

were acquired by using the genetic algorithm to address 

such a complicated optimisation challenge. Genetic 

algorithms were shown to be accurate and effective in 

measuring the process performance of cutting forces, 

according to the findings. 

 

Research Methodology 

Fusion methodology 

Titanium alloy high-speed machining collects vibration and 

acoustic emission signals. The acoustic emission sensor is 

attached to the work (Ti-6Al-4V), while the vibration sensor 

is put on the spindle head. A single data set is created by 

combining the retrieved statistical characteristics. Figure 1. 

displays the methods that was used for this fusion 

investigation. 

 

 
 

Fig 1: Data fusion methodology 
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The prominent characteristics were identified from this 

pooled data using a decision tree technique. To classify the 

data, these traits were considered prominent. Various 

methods such as Decision Tree, Naïve Bayes, Support 

Vector Machines (SVM), and Artificial Neural Networks 

are used for classification analysis. The time, frequency, and 

wavelet domains are all used in this data fusion study. 

 

Feature level fusion in time domain 

The extracted features from acoustic emission (count, ASL, 

and amplitude) and vibration signals (standard error, mean, 

and kurtosis) were fused in to a single data matrix. 

 

Feature selection 

We feed the statistical properties of the vibration data and 

acoustic emission signals into the J48 decision tree method. 

Figure 2. displays the resultant tree. At the very bottom of 

the decision tree are the vibration signal standard error and 

the acoustic emission signal ASL. These characteristics 

stand out from the rest of the vibration and acoustic 

emission signal data because of the wealth of information 

they provide. 

 

 
 

Fig 2: Decision tree of fused data in time domain 

 

Tool condition classification 

The selected features using decision tree are standard error 

from vibration and ASL from acoustic emission signals. 

These features are used as input in the decision tree 

algorithm, naive bayes, support vector machines and 

artificial neural network to identify the tool condition. 

 

Decision Tree 

For tool condition classification, the features that were 

chosen-standard error from vibration and ASL from acoustic 

emission signals-are again fed into the decision tree. Table 1 

displays the decision tree's categorization performance. 

Good, medium, and worn-out are the three tool condition 

states represented by a, b, and c, respectively, in Table 1. 

 
Table 1: Confusion matrix of decision tree algorithm using fused 

data in time domain 
 

a b c Tool condition Classification efficiency, % 

27 1 0 a 

97.62 1 27 0 b 

0 0 28 c 

There are two misclassifications out of 84 data points 

presented to the decision tree. 1 data point belongs to class 

‘a’ was misclassified as ‘b’. Similarly, 1 data point belongs 

to class ‘b’ was misclassified as ‘a’. The classification 

efficiency is 97.62%. 

 

Naïve Bayes 

Next, the features that were chosen (standard error from 

vibration and ASL from acoustic emission signals) are put 

to the test for tool condition classification using naïve bayes. 

The accuracy rate of the categorization is 100% and every 

data point was appropriately labelled. For testing purposes, 

the naïve bayes classifier employs a 10-fold cross validation 

model. 

 

Data Analysis 

To identify tool conditions, the feature level fusion approach 

combines features from many sensors into a single set 

before feeding it to classifiers. Because each classifier will 

have its own bigger input data area, classification accuracy 

can suffer. Redundancy and complementarity are two 

benefits that feature level fusion offers. During the high-

speed machining of titanium alloy, the researchers in this 

work recorded vibration and acoustic emission data. Use of 

these two sensors allowed for the monitoring of tool wear in 

a carbide end mill cutter with four flute coatings. The 

feature-level merging of AE and vibration sensor data 

improved categorization efficiency. Classifiers are fed a 

combined matrix of statistical data from vibration and 

acoustic emission signal features in order to determine the 

tool's status.  

 

Feature level fusion in frequency domain 

Fourier transformations are used to translate signals from 

the time domain into the frequency domain. Statistical 

characteristics were retrieved from frequency-domain AE 

and vibration data. They include the following metrics 

derived from vibration and acoustic emission signals: total, 

mean, median, minimum, maximum, standard deviation, 

variance, kurtosis, and skewness. 

 

Feature Selection 

The statistical features of both the signals in frequency 

domain were given as an input to Decision Tree to identify 

the best features for classification. 

 

 
  

Fig 3: Decision tree of fused data in frequency domain 

 

From the decision tree shown in Figure 3., it was found that 

maximum, skewness, standard deviation from vibration 
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signal and the standard deviation from AE signals are the 

best statistical features in frequency domain to classify the 

tool condition. 

 

Tool condition classification 

The selected features from the decision tree were used for 

the classification of tool conditions using decision tree, 

Naïve Bayes, support vector machines and artificial neural 

network. 

 

Decision tree 

For the purpose of tool condition categorization, the 

characteristics that were chosen are fed into a decision tree. 

Table 2. displays the decision tree's categorization 

performance. Out of the 135 data points that were fed into 

the decision tree, eleven of them were incorrectly classified. 

Table 2.'s confusion matrix shows the following: Five data 

points that should have been in class 'a' were instead 

labelled as 'class 'a' and one as 'data class point 'a'. A 

classification efficiency of 91.8 is achieved. 

 
Table 2: Confusion matrix of decision tree algorithm using the 

fused data in frequency domain 
 

a b c Tool condition Classification efficiency, % 

40 5 0 a 

91.85 5 40 0 b 

1 0 44 c 

 

Naïve Bayes 

The chosen characteristics are then put through their paces 

for tool condition classification using naïve bayes. In order 

to test the data, a ten-fold cross validation model is used. 

Table 3. displays the Naïve Bayes classification 

performance. The confusion matrix revealed that the Naïve 

Bayes classification effectiveness for the fused data in the 

frequency domain was 96.29%, with 1 data point belonging 

to class 'b' and 4 data points belonging to class c. 

 
Table 3: Confusion matrix of Naïve Bayes using fused data in 

frequency domain 
 

a b c Tool condition Classification efficiency, % 

44 1 0 a 

96.29 4 41 0 b 

0 0 45 c 

 

Support vector machine 

Standard deviations from vibration signals and AE signals, 

as well as maximum and skewness, are provided as 

predictors in support vector machines. We want to 

determine the tool wear state. This research makes use of a 

c-SVC support vector machine trained with an RBF kernel 

function. When evaluating the data, a V-fold cross 

validation is used. According to Table 4, the SVM's 

performance with the combined data is shown as a 

confusion matrix. Out of the 135 data points that were fed 

into the support vector machine, 3 were incorrectly 

categorized as belonging to class 'a' while in fact they were 

mislabeled. For the combined data in the frequency domain, 

the machine achieved a precision of 96.29%. 

 
 

 

Table 4: Confusion matrix of support vector machine using fused 

data in frequency domain 
 

a b c Tool condition Classification efficiency, % 

42 3 0 a 

96.29 2 43 0 b 

0 0 45 c 

 

Artificial neural network 

A three-layer feed forward back propagation network is 

used in this artificial neural network. The construction of the 

artificial neural network is shown in Figure 4. Number of 

hidden neurons used in this study is 10. The outputs from 

this network are tool conditions. 

 

 
 

Fig 4: Artificial neural network architecture for fused data in 

frequency domain 

 

The dominant features selected using the decision tree, are 

given as input to this network. The simulation of this 

artificial neural network yields 94.80% classification 

accuracy and the corresponding confusion matrix is 

presented in the Table 5. There are 5 data points which 

belongs to class ‘a’ were misclass class ‘a’ were 

misclassified as class ‘b’. 

 
Table 5: Confusion matrix of artificial neural network for fused 

data in frequency domain 
  

a b c Tool condition Classification efficiency, % 

40 5 0 a 

94.80 2 43 0 b 

0 0 45 c 

 

Feature level fusion in wavelet domain 

The wavelet coefficients were extracted from the vibration 

and AE signals to obtain the time frequency resolution of 

the signal using wavelet transforms. The extracted wavelets 

are Haar, biorthogonal (bior 3.9, bior 4.4 and bior 5.5), 

Daubechies (db11, db12, db13 and db 14) and reverse 

biorthogonal (rbio 4.4, rbio 5.5 and rbio 6.8). From the 

extracted wavelets best performing wavelets are identified. 

 

Wavelet selection 

The best performing wavelets identified are Haar wavelet 

from vibration signature and the bior 4.4 wavelet from 

acoustic emission signals. The wavelet coefficients are 

fused together to form a single data set. The fused data set is 

used for tool condition classification. 
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Tool condition classification 

The selected fused discrete wavelet coefficients were used 

to classify the tool condition using decision tree algorithm, 

Naive Bayes, support vector machine and artificial neural 

network. 

 

Decision tree 

The combined wavelet data set (Haar wavelet from 

vibration and the bior 4.4 wavelet from acoustic emission 

signals) is presented to decision tree for tool condition 

classification. 

 

 
 

Fig 5: Decision tree for fused data in wavelet domain 

 

At various degrees of decomposition, the dominant 

coefficients in tool condition categorization are illustrated 

by the root nodes in the decision tree depicted in Figure 5. 

Signifying the first and fifth level decompositions of the 

vibration signal, respectively, are 'a' and 'e' in Figure 5. 

Table 6. displays the decision tree's classification 

performance as a confusion matrix. Of the 135 pieces of 

data fed into the decision tree, 5 were incorrectly classified. 

Class 2 'a' in cw 1 in class 'c' is the owner of the three data 

points. There are two pieces of data that contribute to the 

categorization efficiency of 96.29%. 

 
Table 6: Confusion matrix of decision tree algorithm for fused 

data in wavelet domain 
 

a b c Tool condition Classification efficiency, % 

42 2 1 a 

96.29 2 43 0 b 

0 0 45 c 

 

Naïve Bayes 

Next, Naïve Bayes is used to assess the chosen discrete 

wavelet features for tool condition categorisation. The 

results of the Naïve Bayes classifier are shown in Table 7. 

Five points from class 'a' were mistakenly placed in class 'b,' 

four points from class 'b' were mistakenly placed in class 'a,' 

and two points from class 'c' were mistakenly placed in both 

'a' and 'b,' respectively. A 91.85% effectiveness rate in 

categorisation 

 
Table 7: Confusion matrix of Naïve Bayes for fused data in 

wavelet domain 
 

a b c Tool condition Classification efficiency, % 

40 5 0 a 

91.85 4 41 0 b 

1 1 43 c 

 

 

Support vector machines 

As inputs to support vector machines, vibration and AE 

signal wavelet coefficients are used as predictors. We want 

to determine the tool wear state. This research makes use of 

a c-SVC support vector machine trained with an RBF kernel 

function. You can get the equivalent confusion matrix in 

Table 8, and the classification effectiveness of this support 

vector machine is 95.56%. The data shown by the confusion 

matrix are as follows: Four data points from class 'a' were 

mistakenly placed in class 'b,' four data points from class 'b,' 

and two data points from class 'b,' were mistakenly placed in 

class 'a,' and one data point in class 'c,' respectively. 
 

Table 8: Confusion matrix of support vector machine for fused 

data in wavelet domain 
 

a b c Tool condition Classification efficiency, % 

41 4 0 a 

95.56 1 43 1 b 

0 1 45 c 

 

Artificial neural network 

The research team has decided to use a three-layer 

feedforward artificial network once again. The artificial 

neural network (ANN) was fed the combined discrete 

wavelet coefficients of the vibration and AE signals. In the 

intermediate layer ten hidden neurones are located. All of 

the data points were properly identified in the network 

simulation using the V-fold cross validation model; the 

results are reported in Table 9 as a confusion matrix. 
 

Table 9: Confusion matrix of artificial neural network for fused 

data in wavelet domain 
 

a b c Tool condition Classification efficiency, % 

45 0 0 a 

100 0 45 0 b 

0 0 45 c 

 

From the results presented, it can be observed that ANN 

gives the maximum classification efficiency of 100%. 
 

Conclusion 

We were able to record the vibration and AE signals' time-

frequency resolution by using the discrete wavelet transform 

to extract wavelets. Eleven wavelets were considered, 

belonging to the bi-orthogonal, reverse bi-orthogonal, 

daubechies, and haar families. In every case where vibration 

data was examined with wavelets, SVM proved to be the 

most successful classifier. There is no better ML approach 

than ANN, which achieves a classification performance of 

100% for all wavelets using AE data. Using AE signals 

rather of vibration signals improves the performance of 

machine learning algorithms in the wavelet domain. 

Machine learning techniques employ these wavelet 

coefficients to categorize tool situations. To get the 

frequency content of the original AE and vibration signals, 

Fast Fourier Transform is used to convert them from time 

domain to frequency domain. Machine learning techniques' 

categorization performance was enhanced by using AE and 

vibration data at the feature level. In the temporal domain, 

feature level fusion outperforms both frequency domain and 

wavelet treatments. 
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