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Abstract

The machine learning techniques used for the purpose of classifying tool conditions. Using these techniques, we can choose the best
classifier for time domain vibration and AE signature and evaluate the classification efficiency. The time domain signatures acquired at the
first stage of the inquiry do not include the frequency data. These wavelet coefficients are used in machine learning techniques for tool
condition classification. To determine the frequency content, the original AE and vibration signals are first converted from the time domain
to the frequency domain using Fast Fourier Transform. The statistical data is derived from the frequency domain features of vibration and
acoustic emission. improving the reliability of machine learning systems using sensor fusion technologies. Acoustic emission signals and
vibrations are combined at the feature level to enhance the classification performance using Machine Learning algorithms.
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Introduction

Health care, quality of life, economic development, and
other metrics are all improved thanks to micro components,
which are essential to the goods' operation. Numerous
industries, including aircraft, biomedicine, electronics, the
environment, communications, automobiles, and more, rely
on micro components. Research has shown that tool-based
micromachining is one processing approach for creating
micro components. According to Masuzawa and Tonshoff
(1997) 1, Dornfeld et al. (2006) 1, and Jain (2010) B1, tool-
based micromachining is a mechanical cutting feature that
allows for components of any size to have geometrically
defined cutting edges that are smaller than 1 mm in size.
Alting et al. (2003) ™ and Masuzawa (2000) D! later
adjusted the dimension range to 500 pm. Chae et al. (2005)
(6] Rahman et al. (2006) /), Asad et al. (2007) ¥, and Liow
(2009) P! list micro milling, micro turning, micro drilling,
and other tool-based micromachining operations. Machining
various materials using tool-based micromachining provides
many advantages, such as a greater material removal rate
(MRR), better finish, reduced production cost, and so on. To
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guarantee dependability and reproducibility, researchers
have lately shown a strong interest in producing micro
components using tool-based mechanical micromachining
procedures.

The researchers have extensively used AE, ACC, and
cutting force dynamometers for TCM, and they primarily
analyse the signals in the time domain and frequency
domain to correlate them with the condition of tool wear.
Additionally, researchers have tried to use the discrete
wavelet transform (DWT) method to examine the collected
signals. The data was first demodulated into its component
frequencies using the DWT method. In order to determine
the process of tool wear, the decomposed signal proves to be
quite beneficial. This study aims to monitor the tool
condition during micro end milling of various materials,
including aluminum copper, and steel (SAE 1017) alloys. It
employs multiple sensors, including an AE, an ACC, and a
cutting force dynamometer. The signals are processed in the
time domain, frequency domain, and DWT.

We need sensors that can identify process anomalies and
start corrective action in order to deploy process monitoring
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and control. Depending on the signal, several sensing and
processing methods may be necessary for process
monitoring. There is a range of dependability levels that
ecach of these signals may provide about the process.
Gathering data from all the signals that may be captured
throughout the operation is essential for achieving optimal
control. The term "data fusion techniques combine data
from multiple sensors and related information from
associated databases to achieve improved accuracy and
more specific inferences than could be achieved by the use
of a single sensor alone." This definition was given by Hall
and Llinas [1997] [! and is widely recognized in the field.
The use of dynamometers, accelerometers, spindle power
sensors, and acoustic emission sensors is common in tool
condition monitoring. At the decision level, there is a fusion
approach; at the feature level, there is another. Following
the steps outlined in earlier chapters, a decision-level
approach uses a tool condition monitoring system that
makes use of one or more sensors to operate as an expert
within its own feature space. Next, a meta-classification
judgement is reached by pooling opinions using a majority
vote method, which is better than fusing individual
classifiers

Literature Review

Raja & Baskar (2020) 'l The ideal machining parameters
for surface grinding, single-pass and multi-pass turning, and
other operations were investigated by using three different
evolutionary optimisation methods: SA, GA, and PSO.
Several mathematical models were used to study the
behavior of optimisation approaches. Particle swarm
optimisation outperformed simulated annealing and genetic
algorithm, according to the results. In addition, the global
optimum solution is often found more quickly using the
particle swarm optimisation approach. Using the algorithms
on online systems for selecting optimal machining settings,
all of the above methods may quickly find a global optimum
solution on a desktop computer.

Yang et al. (2019) I'2 The optimal process parameters for
the EDM process may be determined using a restricted
multi-objective optimisation framework, as suggested by.
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Using experimental data, a counter-propagation neural
network was used to develop the system model. The model
was used to optimize the rate of material removal and
minimise surface roughness via the use of a simulated
annealing strategy all at once.

Zain et al (2020a) 3! used the SA method to determine the
best cutting circumstances for achieving a low surface
roughness value. Radial rake angle, cutting speed, and feed
are the primary cutting conditions. Following this, it was
discovered that the minimum surface roughness could be
reduced by 27%, 26%, and 50% utilizing the experimental
sample data, regression modelling, and response surface
methodology methodologies, respectively, when simulated
annealing was used.

Kuruvila and Ravindra (2021) ¥ used the taguchi method
and a genetic algorithm to find the best wire-EDM process
parameters. Dimensional error, surface roughness, and
material removal rate are the dependent variables in the
multi-objective problem. The independent variables are
pulse-on duration, current, pulse-off length, bed-speed, and
flushing rate. The optimal process parameters were achieved
by using the equal and distinct weighting systems.
Palanisamy et al. (2017) !5, Minimizing machining time
while considering restrictions such as surface roughness,
cutting force, tool life, and amplitude of vibration in end
milling operations was shown by. The convergent results
were acquired by using the genetic algorithm to address
such a complicated optimisation challenge. Genetic
algorithms were shown to be accurate and effective in
measuring the process performance of cutting forces,
according to the findings.

Research Methodology

Fusion methodology

Titanium alloy high-speed machining collects vibration and
acoustic emission signals. The acoustic emission sensor is
attached to the work (Ti-6Al1-4V), while the vibration sensor
is put on the spindle head. A single data set is created by
combining the retrieved statistical characteristics. Figure 1.
displays the methods that was used for this fusion
investigation.

AE Sensor

k4

AE Features - Count,
ASL, Amplitude

Accelerometer

L 4

Vibration Features -
Standard Error, Mean,
Kurtosis

Data Matrix Formulation

k4

Feature Selection —
Decision Tree

l

Tool Condition
Classification:
Classifiers - J48, SWVM,
ANN and NB

Fig 1: Data fusion methodology
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The prominent characteristics were identified from this
pooled data using a decision tree technique. To classify the
data, these traits were considered prominent. Various
methods such as Decision Tree, Naive Bayes, Support
Vector Machines (SVM), and Artificial Neural Networks
are used for classification analysis. The time, frequency, and
wavelet domains are all used in this data fusion study.

Feature level fusion in time domain

The extracted features from acoustic emission (count, ASL,
and amplitude) and vibration signals (standard error, mean,
and kurtosis) were fused in to a single data matrix.

Feature selection

We feed the statistical properties of the vibration data and
acoustic emission signals into the J48 decision tree method.
Figure 2. displays the resultant tree. At the very bottom of
the decision tree are the vibration signal standard error and
the acoustic emission signal ASL. These characteristics
stand out from the rest of the vibration and acoustic
emission signal data because of the wealth of information
they provide.

N

== 0000371 = 0,000371

=95 =05

Fig 2: Decision tree of fused data in time domain

Tool condition classification

The selected features using decision tree are standard error
from vibration and ASL from acoustic emission signals.
These features are used as input in the decision tree
algorithm, naive bayes, support vector machines and
artificial neural network to identify the tool condition.

Decision Tree

For tool condition classification, the features that were
chosen-standard error from vibration and ASL from acoustic
emission signals-are again fed into the decision tree. Table 1
displays the decision tree's categorization performance.
Good, medium, and worn-out are the three tool condition
states represented by a, b, and c, respectively, in Table 1.

Table 1: Confusion matrix of decision tree algorithm using fused
data in time domain

a | b | ¢ | Tool condition | Classification efficiency, %
2711 10 a

1 12710 b 97.62

0] 0|28 c
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There are two misclassifications out of 84 data points
presented to the decision tree. 1 data point belongs to class
‘a’ was misclassified as ‘b’. Similarly, 1 data point belongs
to class ‘b’ was misclassified as ‘a’. The classification

efficiency is 97.62%.

Naive Bayes

Next, the features that were chosen (standard error from
vibration and ASL from acoustic emission signals) are put
to the test for tool condition classification using naive bayes.
The accuracy rate of the categorization is 100% and every
data point was appropriately labelled. For testing purposes,
the naive bayes classifier employs a 10-fold cross validation
model.

Data Analysis

To identify tool conditions, the feature level fusion approach
combines features from many sensors into a single set
before feeding it to classifiers. Because each classifier will
have its own bigger input data area, classification accuracy
can suffer. Redundancy and complementarity are two
benefits that feature level fusion offers. During the high-
speed machining of titanium alloy, the researchers in this
work recorded vibration and acoustic emission data. Use of
these two sensors allowed for the monitoring of tool wear in
a carbide end mill cutter with four flute coatings. The
feature-level merging of AE and vibration sensor data
improved categorization efficiency. Classifiers are fed a
combined matrix of statistical data from vibration and
acoustic emission signal features in order to determine the
tool's status.

Feature level fusion in frequency domain

Fourier transformations are used to translate signals from
the time domain into the frequency domain. Statistical
characteristics were retrieved from frequency-domain AE
and vibration data. They include the following metrics
derived from vibration and acoustic emission signals: total,
mean, median, minimum, maximum, standard deviation,
variance, kurtosis, and skewness.

Feature Selection

The statistical features of both the signals in frequency
domain were given as an input to Decision Tree to identify
the best features for classification.

- . s

Fig 3: Decision tree of fused data in frequency domain

From the decision tree shown in Figure 3., it was found that
maximum, skewness, standard deviation from vibration
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signal and the standard deviation from AE signals are the
best statistical features in frequency domain to classify the
tool condition.

Tool condition classification

The selected features from the decision tree were used for
the classification of tool conditions using decision tree,
Naive Bayes, support vector machines and artificial neural
network.

Decision tree

For the purpose of tool condition categorization, the
characteristics that were chosen are fed into a decision tree.
Table 2. displays the decision tree's categorization
performance. Out of the 135 data points that were fed into
the decision tree, eleven of them were incorrectly classified.
Table 2.'s confusion matrix shows the following: Five data
points that should have been in class 'a' were instead
labelled as 'class 'a' and one as 'data class point 'a'. A
classification efficiency of 91.8 is achieved.

Table 2: Confusion matrix of decision tree algorithm using the
fused data in frequency domain

a b ¢ | Tool condition | Classification efficiency, %
40 | 5 0 a
401 0 b 91.85
1 0 | 44 c

Naive Bayes

The chosen characteristics are then put through their paces
for tool condition classification using naive bayes. In order
to test the data, a ten-fold cross validation model is used.
Table 3. displays the Naive Bayes classification
performance. The confusion matrix revealed that the Naive
Bayes classification effectiveness for the fused data in the
frequency domain was 96.29%, with 1 data point belonging
to class 'b' and 4 data points belonging to class c.

Table 3: Confusion matrix of Naive Bayes using fused data in
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Table 4: Confusion matrix of support vector machine using fused
data in frequency domain

a | b | ¢ | Tool condition | Classification efficiency, %
421310 a

2 14310 b 96.29

0 | 0 |45 c

Artificial neural network

A three-layer feed forward back propagation network is
used in this artificial neural network. The construction of the
artificial neural network is shown in Figure 4. Number of
hidden neurons used in this study is 10. The outputs from
this network are tool conditions.

Input layer

Hidden Layer

Output Layer

Maximum (Vib)
ool at Good Condition
Skewness (Vib)
Tool at mid of its life
Std. Deviation {Vib)

‘Wom-out Condition

Std. Deviation (AE)

Fig 4: Artificial neural network architecture for fused data in
frequency domain

The dominant features selected using the decision tree, are
given as input to this network. The simulation of this
artificial neural network yields 94.80% classification
accuracy and the corresponding confusion matrix is
presented in the Table 5. There are 5 data points which

belongs to class ‘a
misclassified as class ‘b’.

[P}

were misclass class ‘a’ were

Table 5: Confusion matrix of artificial neural network for fused
data in frequency domain

frequency domain a | b | ¢ | Tool condition | Classification efficiency, %
a/b|c Tool condition Classification efficiency, % 401 510 a
441110 a 2 14310 b 94.80
4141/ 0 b 96.29 0|0 |45 c
010145 c

Support vector machine

Standard deviations from vibration signals and AE signals,
as well as maximum and skewness, are provided as
predictors in support vector machines. We want to
determine the tool wear state. This research makes use of a
¢-SVC support vector machine trained with an RBF kernel
function. When evaluating the data, a V-fold cross
validation is used. According to Table 4, the SVM's
performance with the combined data is shown as a
confusion matrix. Out of the 135 data points that were fed
into the support vector machine, 3 were incorrectly
categorized as belonging to class 'a' while in fact they were
mislabeled. For the combined data in the frequency domain,
the machine achieved a precision of 96.29%.
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Feature level fusion in wavelet domain

The wavelet coefficients were extracted from the vibration
and AE signals to obtain the time frequency resolution of
the signal using wavelet transforms. The extracted wavelets
are Haar, biorthogonal (bior 3.9, bior 4.4 and bior 5.5),
Daubechies (dbl1l, dbl2, dbl3 and db 14) and reverse
biorthogonal (rbio 4.4, rbio 5.5 and rbio 6.8). From the
extracted wavelets best performing wavelets are identified.

Wavelet selection

The best performing wavelets identified are Haar wavelet
from vibration signature and the bior 4.4 wavelet from
acoustic emission signals. The wavelet coefficients are
fused together to form a single data set. The fused data set is
used for tool condition classification.
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Tool condition classification

The selected fused discrete wavelet coefficients were used
to classify the tool condition using decision tree algorithm,
Naive Bayes, support vector machine and artificial neural
network.

Decision tree
The combined wavelet data set (Haar wavelet from
vibration and the bior 4.4 wavelet from acoustic emission
signals) is presented to decision tree for tool condition
classification.

== [0 827276 =0 82727E
oo 45
«= [ 476479 = [ 476479
medhum (400)
«= 3104352 = 3104352

Fig 5: Decision tree for fused data in wavelet domain

At various degrees of decomposition, the dominant
coefficients in tool condition categorization are illustrated
by the root nodes in the decision tree depicted in Figure 5.
Signifying the first and fifth level decompositions of the
vibration signal, respectively, are 'a' and 'e' in Figure 5.
Table 6. displays the decision tree's classification
performance as a confusion matrix. Of the 135 pieces of
data fed into the decision tree, 5 were incorrectly classified.
Class 2 'a' in cw 1 in class 'c' is the owner of the three data
points. There are two pieces of data that contribute to the
categorization efficiency of 96.29%.

Table 6: Confusion matrix of decision tree algorithm for fused
data in wavelet domain

a b ¢ | Tool condition | Classification efficiency, %
421 2 1 a

2 14310 b 96.29

0| 0|45 c

Naive Bayes

Next, Naive Bayes is used to assess the chosen discrete
wavelet features for tool condition categorisation. The
results of the Naive Bayes classifier are shown in Table 7.
Five points from class 'a’' were mistakenly placed in class 'b,’
four points from class 'b' were mistakenly placed in class 'a,'
and two points from class 'c' were mistakenly placed in both
'a' and 'b,' respectively. A 91.85% effectiveness rate in
categorisation

Table 7: Confusion matrix of Naive Bayes for fused data in
wavelet domain

a | b | ¢ | Tool condition | Classification efficiency, %
40 510 a

411 0 b 91.85
1 1 143 c
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Support vector machines

As inputs to support vector machines, vibration and AE
signal wavelet coefficients are used as predictors. We want
to determine the tool wear state. This research makes use of
a c-SVC support vector machine trained with an RBF kernel
function. You can get the equivalent confusion matrix in
Table 8, and the classification effectiveness of this support
vector machine is 95.56%. The data shown by the confusion
matrix are as follows: Four data points from class 'a' were
mistakenly placed in class 'b,' four data points from class 'b,’
and two data points from class 'b,' were mistakenly placed in
class 'a,' and one data point in class 'c,' respectively.

Table 8: Confusion matrix of support vector machine for fused
data in wavelet domain

a|b|c| Tool condition Classification efficiency, %
4114 (0 a

1143]1 b 95.56

0]1]145 c

Artificial neural network

The research team has decided to use a three-layer
feedforward artificial network once again. The artificial
neural network (ANN) was fed the combined discrete
wavelet coefficients of the vibration and AE signals. In the
intermediate layer ten hidden neurones are located. All of
the data points were properly identified in the network
simulation using the V-fold cross validation model; the
results are reported in Table 9 as a confusion matrix.

Table 9: Confusion matrix of artificial neural network for fused
data in wavelet domain

alb|c Tool condition Classification efficiency, %
451010 a

01]45]0 b 100

0]0 45 c

From the results presented, it can be observed that ANN
gives the maximum classification efficiency of 100%.

Conclusion

We were able to record the vibration and AE signals' time-
frequency resolution by using the discrete wavelet transform
to extract wavelets. Eleven wavelets were considered,
belonging to the bi-orthogonal, reverse bi-orthogonal,
daubechies, and haar families. In every case where vibration
data was examined with wavelets, SVM proved to be the
most successful classifier. There is no better ML approach
than ANN, which achieves a classification performance of
100% for all wavelets using AE data. Using AE signals
rather of vibration signals improves the performance of
machine learning algorithms in the wavelet domain.
Machine learning techniques employ these wavelet
coefficients to categorize tool situations. To get the
frequency content of the original AE and vibration signals,
Fast Fourier Transform is used to convert them from time
domain to frequency domain. Machine learning techniques'
categorization performance was enhanced by using AE and
vibration data at the feature level. In the temporal domain,
feature level fusion outperforms both frequency domain and
wavelet treatments.
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