#### INTERNATIONAL JOURNAL OF TRENDS IN EMERGING RESEARCH AND DEVELOPMENT

Volume 3; Issue 5; 2025; Page No. 122-124

Received: 20-06-2025 Accepted: 29-07-2025 Published: 15-09-2025

# **Multi-Objective Optimization of 3d Printed Components**

# <sup>1</sup>Akarte Pratik Prakash and <sup>2</sup>Dr. Pavan Kumar Thimmaraju

<sup>1</sup>Research Scholar, P.K. University, Shivpuri, Madhya Pradesh, India <sup>2</sup>Professor, P.K. University, Shivpuri, Madhya Pradesh, India

**DOI:** https://doi.org/10.5281/zenodo.17657877

**Corresponding Author:** Akarte Pratik Prakash

#### Abstract

The study is based on the multi-objective optimization of the 3D printed parts created by Fused Deposition Modeling (FDM), the process focused on enhancing mechanical properties, dimensional performance, and surface quality. The experiment uses hybrid optimization method which combines Taguchi experimental design, Grey Relational Analysis (GRA) and Weibull reliability modeling in order to come up with the best combination of the process parameters. PLA, ABS, and ceramic reinforced PLA were evaluated as thermoplastic materials in order to assess their capability of fulfilling various performance goals. The findings reveal that the combination of statistical and computational optimization methods can be successfully used to improve the overall level of quality and uniformity of the components produced by FDM. The paper concludes that hybrid multi-objective optimization offers a strong and methodical paradigm to enhance the trustworthiness and effectiveness of additive manufacturing systems used in all types of engineering processes.

Keywords: Multi-Objective Optimization, Grey Relational Analysis, Weibull Reliability

#### 1. Introduction

Traditional manufacturing has used subtractive techniques, where materials are removed to create an object, but additive manufacturing (AM) uses objects created layer by layer by directly printing CAD forms. The change has reduced wastage of materials, reduced the production cycles and facilitated the complex geometries in design in the aerospace, automotive and biomedical engineering industries. Fused Deposition Modeling (FDM) is among the more popular techniques in the AM methodology since this approach is cost-effective, flexible in terms of the material used, and simple to manage. Nonetheless, the performance of the FDM-fabricated components is highly dependent on the process parameters such as the layer thickness and the infill density and the rastering angle. In order to maximize quality and attain several goals like strength, accuracy and surface finish, several optimization tools are used including Response Surface Methodology (RSM), Genetic Algorithms (GA), Artificial Neural Networks (ANN) and statistical models like the Weibull distribution technique to make

predictions on the behavior of the materials and determine the best combinations of the parameters. Multi-objective optimization, therefore, is an effective method of enhancing design efficiency and mechanical functioning in 3D printed parts.

#### 2. Literature Review

Raju et al. (2022) [5] the efficiency of Additive Manufacturing (AM) components continues to rise and the use of the technology is prominent in a broad range of industries. They studied Fused Deposition Modeling (FDM) in PLA with carbon nanoparticles to reinforce it to be more biodegradable and mechanically active. They maximized the process parameters like hardness, roughness and tensile strength using the Taguchi experimental design and grey system theory. Analysis of interaction has shown how the performances of the combined process variables affect the performance outcomes.

Pereira et al. (2021) [4] analyzed the most frequently cited articles in mechanical engineering those contained details of the most widely applied multi-objective optimization algorithms and techniques in optimization domain and presented the most crucial multi-objective optimization concepts. Applications for design optimization difficulties, manufacturing issues like welding, macahining, and molding, and structural health monitoring issues were examined in this study. Traditional optimization techniques were crucial in the past, but as computing technology developed, new algorithms that appeared could handle more variables, targets, and nonlinearities. These robust algorithms, which are still seldom ever employed in mechanical engineering, showed appreciable advancement in each application. Due to the ongoing competition between new algorithms better suited to particular issues, meta-heuristics paired with a posteriori decision-making procedure have emerged as a contemporary trend for the solution of multi-objective problems.

Zhang *et al.* (2021) <sup>[6]</sup> reported the revolutionary nature of Additive manufacturing (AM) in the contemporary industrial world, stating its capacity to create innovative materials with excellent mechanical, physical and chemical characteristics. Nevertheless, production time and cost are not the only challenges, AM has demonstrated vast potential of commercially scaleable production, lowering the cost of production almost by 50, and the manufacturing speed has risen more than 400 percent over traditional production.

Harris *et al.* (2018) <sup>[2]</sup> explored the drawbacks and innovations of the FDM-based nanocomposites and solved the material restrictions in AM. According to them, nanofillers like carbon nanotubes, carbon fibre, graphene nanosheets, and nanoclay serve as highly effective to increase mechanical strength, thermal resistance, and electric conductivity. Their results verified that nanocomposite filaments widen the possibilities of FDM and allow them to be used in the prototyping industry sector to large-scale applications.

Khoo et al. (2015) [3] discussed the development of AM since the 1980s and presented the idea of 4D printing, in which smart materials are able to respond to the outside influence and alter their properties or forms. They focused on the recent advancements in both shape memory polymers, nanocomposites, actuators and dynamic origami systems, and indicated that 4D printing could be used in the future to bioprint, robotic and self-assembling structures. Their article emphasized the necessity to conduct further studies on the integration of smart materials into the additive manufacturing system.

Banjanin *et al.* (2018) <sup>[1]</sup> have studied Addictive Manufacturing (AM) innovation which alludes to the most common way of assembling 3D articles with the gradual addition of materials. Adding layers of liquid thermoplastic fibre onto the printed surface is one way that objects are formed using, a development in AM known as Fused Deposition Modelling (FDM). Many factors affect the FDM printed part's mechanical characteristics affecting variables like material piece, expulsion temperature, printing boundaries and surrounding temperature.

### 3. Materials and Methods

### a. Composition of Materials Used

The evolution of manufacturing has moved towards additive manufacturing (AM) (also known as layer-by-layer

manufacturing) to create parts by additively printing (or building up) CAD models, with minimal or no waste and allowing intricate geometries, as opposed to subtractive manufacturing in which material is removed. The most common AM process is the Fused Deposition Modeling (FDM), which is not costly and can be used with a variety of materials.

This paper has chosen three thermoplastic materials that include PLA, ABS, and ceramic reinforced PLA to be discussed comparatively. PLA is biodegradable and dimensionally stable, ABS is tough and thermal resistant and ceramic filled PLA (30% reinforcement) is stiffer and finishes better. With these materials, trade-offs between mechanical performance, accuracy and print quality could be evaluated.

#### b. Research Methodology

- 1. Preparation of Specimen: The thickness of the specimens was designed to match the ASTM D638 Type IV requirements and printed on a Creality Ender-3 S1 Pro FDM printer with a 0.4 mm nozzle. The process variables were layer height (0.150.30 mm), infill density (4090%), print speed (4070 mm/s), and nozzle temperature (200230 C) which were systematically brought into variation using a Taguchi L27 orthogonal array. The G-codes were produced in PrusaSlicer and all samples were allowed to cool in ambient temperatures and then subjected to test.
- 2. Experimental Setup: Examples of tests used were tensile strength, surface roughness, dimensional accuracy and print time. Tensile testing was conducted on Universal Testing Machine (UTM) surface roughness on Taylor Hobson Surtronic 3 + and dimensional precision on a digital Vernier caliper. The experiments were repeated three times each and the means were analyzed.
- **Optimization** Method Used: Multi-objective optimization was done using a hybrid Taguchi-Grey Relational Analysis (GRA) framework with the assistance of Weibull reliability modeling. Taguchi analysis showed important parameters of the process, and GRA transformed numerous responses (strength, roughness, time) into one grade of the Grey Relation: the Grey Relational Grade (GRG), to rank the best combinations. Weibull distribution was used to measure the reliability and consistency of the parts that were printed. Also, genetic algorithm (GA) and neural network (ANN) were cited, which informed prediction and fine-tuning of optimized parameters.

## 4. Results

This experiment compared the surface and mechanical properties of 3D printed components by using the FDM technique with PLA, ABS, and ceramic-reinforced PLA. Numerous process parameters, including the thickness of the layers, the print speed, the infill density, and the nozzle temperature, were optimized using Taguchi-Grey Relational Analysis (GRA) model with the help of Weibull reliability modeling. The findings indicated the combinations of parameters which have provided the best trade off between tensile strength, surface roughness, dimensional accuracy, and print time.

### a. Experimental Results

**Table 1:** Experimental and optimized performance of 3D printed materials

| Material           |      | Speed (mm/s) |    | Nozzle Temp<br>(°C) | Tensile Strength (MPa) | Surface Roughness<br>(μm) | Dimensional Error (mm) | Grey Relational<br>Grade |
|--------------------|------|--------------|----|---------------------|------------------------|---------------------------|------------------------|--------------------------|
| PLA                | 0.20 | 50           | 70 | 210                 | 52.4                   | 4.36                      | 0.10                   | 0.78                     |
| ABS                | 0.25 | 60           | 60 | 230                 | 48.7                   | 5.18                      | 0.12                   | 0.70                     |
| Ceramic-filled PLA | 0.20 | 45           | 80 | 220                 | 61.3                   | 3.92                      | 0.08                   | 0.86                     |

The composite of ceramic-reinforced PLA material showed the most positive overall performance with the highest tensile strength (61.3MPa) and the lowest surface roughness (3.92  $\mu$ m). PLA offered moderate strength and very good dimensional stability and ABS offered durability though with a little more surface roughness.

# b. Optimization and Reliability Analysis

As shown, the best printing conditions were determined using a multi-objective approach based on the Grey Relational Analysis:

Layer thickness: 0.20 mm
Print speed: 45 mm/s
Infill density: 80%

■ Nozzle temperature: 220 °C

The Weibull reliability model showed that the shape parameter (-) exceeded 7 which meant that the tensile strength did not vary much among samples. Therefore, the Taguchi-GRA-Weibull hybrid approach was useful in maximizing the mechanical and surface performance of 3D printing.

#### 5. Conclusion

This paper concludes that multi-objective optimization is an essential tool that can be used to improve the performance and reliability of the components manufactured by Fused Deposition Modeling (FDM). Statistical and computational procedures, including the Taguchi method, the Grey Relational Analysis, and the Weibull reliability modeling can be used to create an effective compromise between the mechanical strength, surface quality, and dimensional precision. The study illustrates that the choice of adequate material and process parameters play an important role in determining the structural integrity and boundary finish of 3D printed components. Reinforced composites were found to enhance overall behavior as it was found to have better bonding and stability than other materials studied. On the whole, the research confirms that hybrid optimization methods are a high-quality and trustworthy way to enhance the quality, stability, and effectiveness of additive manufacturing.

# 6. References

- 1. Banjanin B, Vladic G, Pál M, Balos S, Dramicanin M, Rackov M, *et al.* Consistency analysis of mechanical properties of elements produced by FDM additive manufacturing technology. Matéria (Rio de Janeiro). 2018;23(4):1–15.
- 2. Harris M, Potgieter J, Mohsin H, De Silva K, Le Guen MJ. Effects of in-process temperatures and blending polymers on acrylonitrile butadiene styrene blends. Inventions. 2021;6(4):1–12.

- 3. Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, *et al.* 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping. 2015;10(3):103–122.
- 4. Pereira JLJ, Oliver GA, Francisco MB, Cunha SS, Gomes GF. A review of multi-objective optimization: Methods and algorithms in mechanical engineering problems. Archives of Computational Methods in Engineering. 2021;28(4):2285–2308.
- 5. Raju R, Murali M, Varma MK, Baghel PK. Optimization of process parameters for 3D printing process using Taguchi based grey approach. Materials Today: Proceedings. 2022;68(P5):1515–1520.
- 6. Zhang X, Liou F. Introduction to additive manufacturing. In: Handbooks in Advanced Manufacturing. Elsevier; c2021. p. 1–31.

### **Creative Commons (CC) License**

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.