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Abstract 

Edge Artificial Intelligence (Edge AI) is a paradigm change in spatially distributing computational assets to process and infer with an 

applicable machine learning model locally on edge devices, including sensors, microcontrollers and embedded systems instead of using just 

cloud infrastructure. This has been resolved to provide an increasing demand of ultra-low latency, reduced bandwidth usage, increased 

energy efficiency, and a much security of data that cannot be ignored in application areas like autonomous vehicles, wearable healthcare 

devices, smart surveillance, and industrial automation. Since the complexity of inference tasks increases, it can be noted that the edge ceases 

to operate as a raw data path; instead, it actively contributes to intelligent decision-making. The Real-Time Operating System (RTOS) is in 

the centre of this change, where lightweight, but deterministic operating system layer controls the task execution, the use of memory, 

interactions with the available hardware within embedded systems. Unlike general-purpose operating systems, RTOS kernels are specifically 

designed to provide certain execution time and predictable execution time, which is the time embargoing necessity in AI workloads using 

neural network inference. Convolutional layers, activation functions and tensor operations thus should be closely coordinated under the 

constraints of real-time failure of mission-critical applications. 

 

Keywords: Edge AI, Real Time Operating Systems, Deterministic Scheduling, Heterogeneous Accelerator Management, Memory 

Management, Security and Isolation 

  

Introduction 

The number of applications based on edge-based artificial 

intelligence (AI) is snowballing especially in networked 

devices with limited resources, low-power, and real-time 

timing needs. Edge AI tightens those constraints since 

machine-learning inference runs locally in microcontroller 

or system-on-chip runtime environments that require 

deterministic performance but also energy efficiency and 

operational safety [1]. RTOS Real-Time Operating Systems 

is an essential aspect in this field since it offers secure 

execution primitives, deterministic schedules, and 

interruption processing. Older RTOS kernels, initially 

intended to be used in real-time control systems, have been 

modified to support AI workloads: by allocating tensors 

statically, by interfacing the RTOS with operator libraries 

(e.g. TensorFlow Lite Micro, CMSIS-NN), and by 

optimizing jitter [2]. With Edge AI deployments making their 

way towards safety-critical applications such as autonomous

system and medical diagnostics, there has also been a 

commensurate rise in the need to have certifiable and 

formally verified RTOS platforms. 

The current paper considers architecture and performance 

trade-offs across RTOS-based platforms that are commonly 

used to implement Edge AI applications. According to the 

kernel organization, scheduler, AI, and power-optimization 

mechanisms, FreeRTOS, Zephyr, ThreadX and VxWorks 

are examined. Benchmarking performance, measured via a 

quantized convolutional neural network on an STM32H7 

platform, contains measures of inference latency, jitter, CPU 

load and energy per inference. The results enable advisable 

selection of RTOS solutions in context-aware AI 

applications and further light on investigation on future in 

co-designing RTOS and AI, in particular on heterogeneous 

schedules, security isolation, and auto-deployment 

pipelines. 
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Literature Review 

A. Evolution of Edge AI and RTOS 

Edge AI acts as a combination of machine learning 

inferences and edge computing that enables local processing 

of data to support decreased latency and reduce bandwidth 

and reinforce privacy [3]. Ultra-low latency real-time 

operating systems (RTOS) architected as a control systems 

application, in turn, provided extreme latencies but had no 

native packages to support dynamic memory allocation and 

tensor-based data storage needed by neural-network tasks. A 

taxonomy posted by Gill et al. (2024) classifies Edge AI 

systems based on processing stratum (cloud, fog, edge 

device) and assigns the importance of RTOS layer as the 

real-time inference centerpiece. 

 

B. TinyML and Microcontroller Inference Engines 

TinyML has gained popularity and has quickened the 

development of inference on microcontrollers with a 

memory footprint that is in kilobytes. Venkataramanan et al. 

(2023) in their recent work present architectures of 

embedding ML models in real-time operating system 

(RTOS) firmware, where the advantages of static allocations 

of tensor buffers is mentioned, the advantages of network 

quantization offline and deployment, and use of operator 

libraries like CMSIS NN. Singh et al. (2023) additionally 

show that RTOS task structures can be co-designed with 

machine learning model execution cycles to ensure 

dependable execution time of tasks with deterministic 

deadlines even in presence of severe memory limitations. 

 

C. AI-Enhanced RTOS Extensions 

Recent research efforts targeted at closing the gap between 

conventional real-time operating systems (RTOSs) and the 

computational requirements of machine learning (ML) have 

resulted in the development of a number of AI-centric 

runtimes [4]. A similar interface Zephyr Kenning Runtime 

specifies a homogeneous API to communicate with various 

inference backends (TensorFlow Lite Micro, microTVM, 

CMSIS NN), which enables on-device model testing and 

benchmarking. The FreeRTOS + TFLite Micro has also 

gained a tutorial to help users integrate the TensorFlow Lite 

for Microcontrollers framework into FreeRTOS projects to 

automatically manage memory-pools, to dispatch operators 

using DMA-accelerated paths, and to utilisetickless idle-

modes to maximise both perceived inference performance 

and power-efficiency [5]. Last, LiteRT for Microcontrollers, 

a bare-bones counterpart to Google TensorFlow, shows that 

a low-weight micro runtime, weighing only 16 KB, is 

capable of running uncomplicated vision and keyword-

spotting models without full-fledged operating-system 

support. 

 

D. Benchmarking Frameworks and Formal Methods 

Application-specific standardized benchmarking, e.g., 

Kenning evaluation application, allows comparing RTOS 

platforms with the same CNN workloads. The findings 

demonstrate that the optimized kernel of Zephyr has sub-

millisecond jitter, but commercial RTOS (such as ThreadX) 

use preemption threshold to get maximum throughput. At 

the same time, works on formal proving and WCET analysis 

of neural network inference chains on RTOS kernels are 

emerging, which can provide the basis of certifiable AI in 

safety-critical areas, although there is little full-scale study 

at present. Table 1 below gives an overview of important 

RTOS milestones of Edge AI. 

 
Table 1: Key RTOS milestones for Edge AI. 

 

Year  Key Development  
2019 TinyML concept defined formalization of ML on microcontrollers  
2022 TensorFlow Lite for Microcontrollers setup guide released 

2023 Zephyr Kenning runtime launched, unifying inference back-ends  
2024 Edge AI taxonomy & systematic review published  
2025 Zephyr’s Kenning gains improved AutoML integration features 

 

System Requirements and Design Considerations 

An edge artificial-intelligence workload real-time operating 

system design should focus on minimising deterministic 

worst-case latency and jitter. This requires a pre-emptive 

scheduler at the kernel level that has priority, together with 

either a pre-emption threshold algorithm or deadline-

monotonic scheduler to provide support of strict deadlines 
[6]. HEW-assistance tools like the ARM Nested Vectored 

Interrupt Controller (NVIC) and the Data Watchpoint and 

Trace (DWT) cycle counter have to be utilized to quantify 

the interrupt-to-task latencies and on minute-grain 

instrumentation [7]. The system also benefits through tickless 

or adaptive tick modes and can reduce processor idleness; 

that is, they remove period tick timer-tick interrupts and 

save interrupt jitter and increase the timing predictability. 

Comprehensive care should be taken in optimising context-

switch paths with an eye in minimising the sets of register 

saves and restores additionally avoiding unnecessary system 

calls so as to maintain task-switching latencies within sub-

microsecond range in case of Cortex-M and RISC-V 

microcontrollers. 
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Fig 1: Context-Switch Time Comparison 

 

The results of experimental findings which are shown in 

Figure 1 indicate that context switch latency on Cortex M4 

is reduced to 1.8 6s due to migration of tick based scheduler 

to tickless operation. The decrease in latency is attributed to 

the fact that periodic timer interrupts are completely avoided 

during processor idle time; not only does that reduce the raw 

time that context switches take, but also reduces jitter since 

spurious wake-ups are fewer. Real-time operating systems 

(RTOSs) must meet a very strict footprint constraint on edge 

AI systems, often restricted to tens or hundreds of kilobytes 

of RAM and flash memory. This means that all critical tasks 

should use the static memory allocation, whereas the heap, 

that should be carefully maintained, needs to provide 

dynamic creation of tensor buffers. The pattern follows the 

method to reduce fragmentation and peak allocation times 

such as region based memory pools, object pool allocators, 

and generation of compacted memory layout at compile-

time. In addition, zero-copy DMA transfers are required: the 

RTOS has to provide lock-free queues or mailboxes 

primitives to enable inference engines to enqueue and 

deplane buffers directly to the hardware accelerators, thus 

maximizing throughput reducing latency jitter. 

The other requisite is its flawless adjacency with the 

contemporaneous AI inference frameworks. The RTOS 

should also provide APIs to load pre-trained binary models, 

version and unload them and also make sure that tensor 

lifecycles do not go out of task lifecycle [8]. Making this 

coordination happen, the native thread abstractions are 

extended with specialized, so-called AI tasks, containing 

model context, operator kernels, and dedicated memory 

areas. With such libraries provided by the vendors, e.g. 

CMSIS NN, TensorFlow Lite for Microcontrollers, or 

Kenning interface with Zephyr, being implemented as part 

of the scheduling subsystem, the RTOS is able to offload 

convolution, pooling, and activation functions to DSP or 

accelerator cores, and schedule performance-sensitive 

operator kernels on high-priority threads with minimal 

overhead. 

Edge nodes operating on batteries are required to follow 

power-conserving approaches that are very strict. In this 

regard, the real-time operating system needs to introduce the 

advanced policy mechanisms that plan the manipulation 

between run, sleep and deep-sleep states synchronously with 

the AI workload conditions [9]. A tickless idle mode can be 

launched by an inference-driven idle handler, and can pause 

clock activities of peripheral devices selectively until a 

peripheral will be ready next time of data-ready interrupt. It 

can perform dynamic voltage and frequency scaling (DVFS) 

at a proficient granularity, enabling the system to reduce 

core frequency during background work that can not break 

the AI deadline without wasting cycles on a high-priority 

process [10]. In addition, profiling hooks and energy-aware 

scheduling have the ability to tweak inference rates or 

quantization level of a model dynamically on the fly, to 

extend life-time of operation. 

Secure execution environments are also essential where you 

want to host potentially sensitive Artificial Intelligence 

workloads on an untrusted platform or in a sharing 

environment. In this case an RTOS has to include Memory 

Protection Units (MPUs) or Memory Management Units 

(MMUs) to give isolated execution contexts to each AI task, 

avoiding inadvertent access to memory or data leakage. 

Some boot chain and code signing capability is vital to 

ensure that no tampering of model binaries and operator 

kernels has occurred between creation and the point they are 

executed. Encryption of storage plus in-flight data 

encryption using hardware accelerators of AES or SHA 

ensures model integrity and secrecy at run time and allows 

edge AI to protect safety- and security-critical devices like 

medical equipment and industrial controls. Figure 2 defines 

the description of each primary RTOS requirement in terms 

of three analytical categories, namely, overheads of 

execution, the complexity of implementation, and the 

maturity of the ecosystem, based on a scale of 1-5. Stern 

latency assurances, such as, have high overhead (5) but fair 

maturity (3), testifying to the extent of engineering required 

to tune RTOS kernels to hard real-time capability. On the 

other hand, security mechanisms receive perfect scores of 

overhead and complexity (5) and have an industry supported 

full suite of ISO and industrial certifications which result in 

the highest score of maturity (4). 
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Fig 2: Requirement vs Metric Heatmap 

 

RTOS Platforms for Edge AI 

FreeRTOS 

FreeRTOS has been carrying on as one of the widely used 

open-source real-time operating systems (RTOS) utilized in 

edge-AI applications on microcontrollers. Its lightweight 

nature backed by its expansive system of extensions 

explains how it became widespread [11]. The actual size of 

the core is just 512-1024 B of ROM, and only 1512 B of 

RAM in the typical (default) configuration, assuming the 

compiler uses default memory allocator and scheduler 

primitives. The scheduling architecture is of the old 

fashioned form where scheduling is based on priorities, pre-

emptions and there is an available tickless mode to 

minimize jitter and power dissipation. FreeRTOS itself does 

not include libraries to do inference but community and 

commercial extensions, including ports of TensorFlow Lite 

for Microcontrollers or CMSIS NN operator kernels, allow 

on-device neural network inference. Moreover, 

deterministic tensor buffer allocation that is necessary to 

achieve hard real-time AI deadlines in FreeRTOS is 

possible due to the availability of static memory pools and 

configurable heap schemes. 

 

Zephyr 

Zephyr refers to a free and open-source real-time operating 

system (RTOS) having an Apache license. It has 

component-based architecture and is compatible with ARM 

as well as RISC V and x86 families of processors [12]. By the 

2025 release, the kernel may be set to a minimal footprint of 

20 40 kilobytes on small-scale applications. Using a 

modular build system allows the developers to choose only 

the particular set of subsystems, drivers and middleware 

needed in their project. In the case of basing the application 

usage on neural networks, the Kenning runtime library is 

offering a common API to load models and to run them on 

different backends like TensorFlow lite Micro, microTVM, 

and CMSIS NN besides supporting it with in-built 

benchmarking feature. Zephyr implements preemptive 

priorities scheduling as well as cooperative scheduling, and 

its idling feature is tickless, which helps to avoid latency 

variability and waste energy on the system. There is 

optional Memory Protection Unit (MPU) layer, and it can be 

integrated with secure boot to further increase security. 

 

ThreadX 

One of the features that make Azure RTOS ThreadX stand 

out, so far, is preemption threshold scheduling. In that, a 

preempted thread may delay being preempted until the 

preemption threshold is reached, and the overhead due to 

context switching is reduced and the worst-case response 

times get close to the pure context-switch latency. ThreadX 

kernel can be used with less memory footprint as it takes 

less than 2 kilobytes of code space on ARM cortex-M 

devices. It allows priority inheritance and mutexes with 

built-in deadlock avoidance thus making it adequate in 

mixed criticality edge-AI tasks. Integration with AI is 

normally through connecting to TensorFlow Lite Micro or 

inference libraries supplied by the vendor. The mature 

middlewear ecosystem in ThreadXis providing TU V and 

UL certification by providing connectivity, file systems, and 

security- Net X Duo, FileX and TLS. 

 

VxWorks 

The VxWorks 7 of Wind River is a high-performance RTOS 

that has been commercialized to work on safety and 

security-certified edge nodes. Symmetric multi-processing 

(SMP) and asymmetric multi-processing (AMP) are both 

configured on multi-core CPUs and all the memory 

management unit (MMU) protections have been fully 

integrated [13]. VxWorks is also now integrated with a 

prevalidated NPU acceleration stack with DeepX to support 

transparent offloading of convolutional, and transformer 

kernels to hardware accelerators. The footprints of typical 

systems start at about 100 kB and can be additionally 

minimized as a result of customizable profiles. VxWorks 7 

is also optimized to support mission-critical AI-enabled 

edge applications because of its deterministic scheduler, 

secure boot, support of code-signing capabilities, and other 

safety packages (ISO 26262 and DO 178C). 
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Table 2: Comparison of RTOS Platforms for Edge AI. 
 

RTOS Kernel Type Footprint Scheduling AI Integration Security / Certs NPU Support 

FreeRTOS 
Preemptive 

priority 

5–10 KB ROM; 

~15 KB RAM 

Priority-based, 

tick/tickless modes 

Third-party 

TFLite-Micro, 

CMSIS-NN; static pools 

Optional MPU; OTA 

security extensions 

Via DMA/mailboxes 

(no native support)  

Zephyr 
Modular 

microkernel 

~20–40 KB 

(configurable) 

Preemptive + 

cooperative; tickless idle 

Kenning unified API 

(TFLM, microTVM, 

CMSIS-NN) 

MPU, secure boot; 

Zephyr security 

subsys 

Community-driven 

accelerator APIs 

ThreadX Picokernel ~2 KB (core) 
Priority + 

preemption-threshold 

Linkable TFLM; vendor 

DSP/accelerator linkages 

NetX Duo/TLS; 

TÜV/UL certified 

Indirect via scheduling 

primitives 

VxWorks 
Monolithic / 

SMP 
≥100 KB 

Fair-share + priority; 

deterministic 

Native SDKs for NPU 

offload (DeepX 

collaboration) 

MMU, secure boot, 

code signing; 

ISO/DO-178C 

Built-in NPU/AI 

accelerator support  

 

Table 2 is a comparative analysis of the commercially 

available RTOS, according to the parameter of the footprint, 

the scheduling level, the support of the AI framework, and 

the security features which allows a practitioner making a 

decision about an optimal RTOS to deploy an edge AI 

application. 

 

Performance Benchmarking and Evaluation 

An in-depth comparison of the effectiveness of the usage of 

real-time operating systems (RTOSs) with regard to edge 

artificial intelligence requires the adoption of a 

homogenously constructed convolutional neural networks 

(CNN) inference pipeline. In that regard, a standardised 

CNN which consisted of 3 convolutional layers, 2 fully 

connected layers and activation functions rectified linear 

unit was quantised in 8-bit integer format following post-

training quantisation method in the Tensorflow Lite toolset. 

This model was implemented in an STM32H7 development 

board (ARM Cortex-M7 at 480 MHz, 2 MB Flash and 1 

MB SRAM) where power consumption was measured using 

high-precision shunt resistor and an oscilloscope. Best 

practice configurations were used on each RTOS: tickless 

idle and CMSIS NN operator kernel were used with 

FreeRTOS; Kanning enabled and tickless idle was used with 

Zephyr; pre-emption- threshold scheduling was used with 

ThreadX, and the VxWorks was used in the DeepX SDK to 

take the NPU offload. The resulting figures included (i) end-

to-end inference latency (when the data is available to when 

it is classified), (ii) worst-case latency jitter measured over 

1,000 runs, (iii) average CPU utilisation during an inference 

burst, and (iv) energy consumed per inference. 

 

Inference Latency and Jitter 

According to experimental results, Zephyr-based inference 

activities guided with a Kenning kernel possess an average 

latency of 12.3 milliseconds, which happens in a small jitter 

envelope of ±0.5 milliseconds, where these advantages are 

caused by the diligent architecture of the kernel as well as 

its improved memory management strategies that reduce the 

number of interrupt-induced distortions. Similarly, 

FreeRTOS (limited to using CMSIS-NN operations only) 

has a slightly higher average inference latency of 13.8 

milliseconds and high jitter, of up to 1.1 milliseconds, 

because of its dynamic memory allocator and the additional 

periodic interrupts that are generated due to it. In contrast, 

not only does ThreadX put out even slower throughput 

compared to FreeRTOS (mean inference latency of 11.7 

milliseconds), but also alleviates per-inference overhead, in 

both cases due to its pre-emptive, per-batch threshold 

scheduler which batches context switches to small degrees. 

And, lastly, the VxWorks kernel, running convolution on an 

external NPU, creates the shortest latency of 8.5 

milliseconds; again, this lowest latency comes at the cost of 

a larger code footprint and an added cost of loading both an 

NPU driver and a model binary to high-speed external 

memory. 

 

CPU Utilization and Power Consumption 

The inference bursts showed that most of the time the CPU 

spent on Zephyr was close to 78 percent, which showed 

effective division of labor between the kernel and inference 

functions. FreeRTOS was utilized to a maximum of 85 

percent (both inferences and background housekeeping 

work). ThreadX recorded 70 percent showing the success of 

its thresholded preemption in putting the loading within a 

few, longer execution windows. In VxWorks offloads only 

40 percent of the CPU was utilised with the NPU doing 

most of the convolutional work. With regard to energy per 

inference, Zephyr 0.85 mJ, FreeRTOS 0.92 mJ, ThreadX 

0.80 mJ and VxWorks 0.65 mJ were all seen to be the most 

energy efficient due to hardware acceleration in 

combination with a real time offload framework. 

 

Analysis of Trade-Offs 

These findings show prime tradeoffs: open source RTOS 

such as Zephyr and FreeRTOS provide small, energy 

efficient inference at moderate latency, and are appropriate 

in deeply resource-restricted devices without external 

accelerators. ThreadX uses scheduler optimizations that 

balance between footprint and throughput, which causes it 

to fit well with mid range platforms of MCU. And although 

VxWorks supports the lowest latency and energy per 

inference, it has greater system requirements and licensing, 

making it better suited to a high end or safety critical 

application where inference acceleration by NPU is a safety 

certification requirement [14]. All in all, the benchmarking 

serves to emphasize once again that the best RTOS should 

reflect on the main successful factor in an edge AI 

application: latency, energy efficiency, or ecosystem 

maturity. 
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Discussion 

 

 
 

Fig 3: RTOS Footprint vs. Inference Latency with Certification Maturity 

 

Figure 3 shows the trade off space in which RTOS 

platforms have dissimilar footprints according to the bubble 

size that signifies test level. VxWorks (100=99 to 110 KB 

footprint, 8.5 to >16 ms latency, maturity 5) is the obvious 

choice to win on latency and certification at the expense of a 

large footprint. ThreadX (2KB, 11.7ms, maturity 4) and 

Zephyr (30KB, 12.3ms, maturity 3) fall in the middle 

ground in both resource demands and response times, and 

FreeRTOS (15KB, 13.8ms, maturity 2) is the lowest-

resource footprint and slowest one. This diagram highlights 

how many-folds the conundrum of choosing an RTOS to 

use in edge AI installations may be. 

The architecture in scheduling has strong implications on 

the energy profile as well as latency in edge AI workloads. 

Using preemption threshold model in ThreadX, the same 

raw throughput and energy savings could be achieved in 

comparison to traditional tickless kernels where the context 

switching came to be bundled into fewer longer execution 

windows, indicating that there can be a sweet spot between 

hard-real time scheduling guarantees and AI batch 

scheduling. In the meantime installations like those in 

Zephyr tickless idle implementation showed that by 

completely removing periodic interrupts, not only was jitter 

reduced, but it also as possible to implement both very 

aggressive power down strategies during the idle phase 

between inference bursts to save significantly more energy 

per inference (greater than 7%). Such outcomes highlight 

the need to achieve co optimisation between the RTOS tick 

policy, interrupt architecture, and power management hooks 

in the case of imposing a tight latency or energy budget 

constraint.Use of advanced computer power on the realistic 

embedded platforms depends on the level of maturity of the 

ecosystems and the level of tooling support that can be 

availed. VxWorks VxWorks is unique in the tight gauge of 

seamless NPU integration and ISO/IEC/IEEE safety 

packages, which can significantly reduce time-to-market in 

regulated space, including automotive, medical, and 

aerospace, but in the open-source RTOS setting, custom 

porting and thorough internal checking are often necessary. 

As a result, programmer-pleasing metrics including 

commercial support packages, certified driver bundles and 

integrated development environments (IDEs) tend to 

outshine raw performance, especially in situations where 

long term maintenance and liability are the prime concerns. 

Security and memory management also makes selection 

more complex. Static allocation model in FreeRTOS and 

Zephyr limits the risk of fragmentation but creates the 

danger of overprovisioning in case of evolutions of tensor 

buffer [15]. By comparison, RTOS kernels supporting 

integrated MPU/MMU such as VxWorks and Zephyr with 

its optional MPU layermake it much simpler to enforce 

memory isolation between AI workloads and system 

services. Isolation of this kind is critical to the security of 

sensitive data and meeting security certifications. Additional 

members of the RTOS evaluation matrix are secure boot and 

software signing that were in the realm of high-end systems 

but are now increasingly expected even in microcontroller-

level deployments. 

Finally, an optimal RTOS selection appears after the 

balancing of the requirements of a certain application with 

the limits of the platform. In applications where AI 

capabilities are needed but the cost of computing and battery 

power are paramount, embedded AI where the AI model is 

small or deeply embedded, such as battery-powered sensors 

and wearables, FreeRTOS or Zephyr with well-integrated 

TensorFlow Lite Micro or CMSIS NN is sufficiently 

lightweight and performs well. Because mid-range 

microcontroller ThreadX systems may need deterministic 

batch inference throughput, like industrial controllers and 

smarts appliances, its scheduling algorithm, preemption 

threshold, and the rich middleware support make creating 

deterministic batch inference easier with little engineering 

effort. Nodes that manage safety- or security-critical 

applications, such as automotive Advanced Driver 

Assistance Systems (ADAS), or medical diagnostic applied 

to implantable devices, need VxWorks with its certified 

NPU offload, complete MMU support, and thorough end-to-

end safety packages. 
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When viewed through the prisms of resource limitations, 

scheduling infrastructure, maturity of the ecosystem, and the 

security positioning of edge AI deployments, practitioners 

can enter the design space of edge AI deployments, which 

has complex interdependencies and choose a platform that 

best balances between their technical requirements and 

business goals. 

 

Future Directions 

Over time, the already well-developed RTOS kernels will 

need more than mere real-time scheduling capabilities to 

schedule heterogeneous compute fabrics in an edge AI 

environment. One of the most promising efforts is the 

creation of integrate scheduler systems that have inherent 

knowledge of and control regarding CPU, DSP, GPU and 

NPU resources and operate under the same real-time policy, 

so that the migration and loading of work across 

accelerators can be dynamic, achieving optimization, and 

the deadline obligations not be violated. To supplement that, 

studies on AI-assisted scheduling, i.e. when the lightweight 

machine-learning model estimates how long each concern 

requires to complete and adjusts the priority or voltage-

frequency mapping, may additionally tune down latency and 

power consumption. 

RTOS-based neural networks verification procedures 

deserve more attention. Incorporation of WCET analysis 

tools with control of not just control flow, but also data 

flow, via quantized operator kernels, would allow providers 

to gain provable bounds on worst-case end-to-end inference, 

a requirement of certification of AI-enhanced controllers in 

autonomous vehicles and medical devices. It is an open 

challenge, though, to extend these techniques to more recent 

behaviors, like online updating of a model, or adaptive 

quantization. 

Delivered edge AI systems facing adversarial environments 

shall become increasingly important in terms of security and 

isolation. The future version of kernels can incorporate the 

module of runtime attestation that constantly checks the 

integrity of model binaries and feedback of inferences using 

on-chip cryptographic accelerators when possible to incur 

little performance costs. In combination with new memory-

safe languages or AI task sandboxing, these would drop the 

risk footprint of learning on-device, and eliminate sensor 

spoofing or model poisoning attacks. 

Last but not least, the development of RTOS configuration 

and neural network architecture will be automated, as 

resource-aware neural architecture search (NAS) with static 

analysis of the kernel footprints appears to streamline the 

deployment pipeline. Such toolchains can produce neither 

the RTOS build nor the optimal AI model targeted at a 

specific hardware condition, since they will optimize their 

code size, latency in their execution and power 

consumption. This dual optimization results in smart 

toolchain participants in quickening the time to market on 

intelligent embedded products. 

 

Conclusion 

The paper presents a study of the way real-time operating 

systems (RTOSs) make it possible to do high-performance, 

deterministic workloads of edge artificial-intelligence (AI) 

on resources-constrained devices. It provides an elaborate 

classification of system requirements which- include latency 

guarantees, memory efficiency, integration with AI 

frameworks, power management, and security. The review 

of four exemplary RTOS platforms FreeRTOS, Zephyr, 

ThreadX, and VxWorks aims at demonstrating the trade-

offs of the platforms based on their architecture. A stringent 

benchmarking methodology based on a standardized 

convolutional-neural-network (CNN) inference pipeline, 

measures the difference in latency, jitter and in CPU usage 

and energy per inference. The generated results show that 

although scheduler policies and accelerator offloading can 

have significant effects on performance and efficiency, there 

is no single RTOS, which performs consistently better in all 

of the used metrics than the rest, since lightweight kernels 

like FreeRTOS and Zephyr are the best choice in situations 

when a node is very limited, ThreadX delivers the best 

deterministic throughput in intermediate resource budget, 

and VxWorks is the leader in latency and certification 

compatibility in mission-critical systems. In the future, 

further techniques to improve heterogeneous scheduling, 

formal verification, security attestation and automated co-

design are going to work on the next generation of RTOS 

kernels, further erasing the line between general-purpose 

operating systems and AI accelerators. The matching of 

RTOS capabilities with the specific needs of edge AI will 

open up new possibilities of application that will provide 

intelligent behavior, combined with uncompromised real-

time guarantees. 
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