
88 https://researchtrendsjournal.com

Online at: https://researchtrendsjournal.com ISSN No: 2584-282X

Indexed Journal Peer Reviewed Journal

INTERNATIONAL JOURNAL OF TRENDS IN EMERGING RESEARCH AND DEVELOPMENT

Volume 3; Issue 4; 2025; Page No. 88-95

Received: 17-05-2025

Accepted: 30-06-2025

Real-time Operating Systems (RTOS) For Edge AI

1Forhad Monjur Hasan, 2Onell Allan Chakawuya and 3Mostafa Mohammad Razaul

1-3Department of Electronics and Information Engineering, China West Normal University, China

DOI: https://doi.org/10.5281/zenodo.16729307

Corresponding Author: Forhad Monjur Hasan

Abstract

Edge Artificial Intelligence (Edge AI) is a paradigm change in spatially distributing computational assets to process and infer with an

applicable machine learning model locally on edge devices, including sensors, microcontrollers and embedded systems instead of using just

cloud infrastructure. This has been resolved to provide an increasing demand of ultra-low latency, reduced bandwidth usage, increased

energy efficiency, and a much security of data that cannot be ignored in application areas like autonomous vehicles, wearable healthcare

devices, smart surveillance, and industrial automation. Since the complexity of inference tasks increases, it can be noted that the edge ceases

to operate as a raw data path; instead, it actively contributes to intelligent decision-making. The Real-Time Operating System (RTOS) is in

the centre of this change, where lightweight, but deterministic operating system layer controls the task execution, the use of memory,

interactions with the available hardware within embedded systems. Unlike general-purpose operating systems, RTOS kernels are specifically

designed to provide certain execution time and predictable execution time, which is the time embargoing necessity in AI workloads using

neural network inference. Convolutional layers, activation functions and tensor operations thus should be closely coordinated under the

constraints of real-time failure of mission-critical applications.

Keywords: Edge AI, Real Time Operating Systems, Deterministic Scheduling, Heterogeneous Accelerator Management, Memory

Management, Security and Isolation

Introduction

The number of applications based on edge-based artificial

intelligence (AI) is snowballing especially in networked

devices with limited resources, low-power, and real-time

timing needs. Edge AI tightens those constraints since

machine-learning inference runs locally in microcontroller

or system-on-chip runtime environments that require

deterministic performance but also energy efficiency and

operational safety [1]. RTOS Real-Time Operating Systems

is an essential aspect in this field since it offers secure

execution primitives, deterministic schedules, and

interruption processing. Older RTOS kernels, initially

intended to be used in real-time control systems, have been

modified to support AI workloads: by allocating tensors

statically, by interfacing the RTOS with operator libraries

(e.g. TensorFlow Lite Micro, CMSIS-NN), and by

optimizing jitter [2]. With Edge AI deployments making their

way towards safety-critical applications such as autonomous

system and medical diagnostics, there has also been a

commensurate rise in the need to have certifiable and

formally verified RTOS platforms.

The current paper considers architecture and performance

trade-offs across RTOS-based platforms that are commonly

used to implement Edge AI applications. According to the

kernel organization, scheduler, AI, and power-optimization

mechanisms, FreeRTOS, Zephyr, ThreadX and VxWorks

are examined. Benchmarking performance, measured via a

quantized convolutional neural network on an STM32H7

platform, contains measures of inference latency, jitter, CPU

load and energy per inference. The results enable advisable

selection of RTOS solutions in context-aware AI

applications and further light on investigation on future in

co-designing RTOS and AI, in particular on heterogeneous

schedules, security isolation, and auto-deployment

pipelines.

https://researchtrendsjournal.com/
https://researchtrendsjournal.com/
https://doi.org/10.5281/zenodo.16729307

International Journal of Trends in Emerging Research and Development https://researchtrendsjournal.com

89 https://researchtrendsjournal.com

Literature Review

A. Evolution of Edge AI and RTOS

Edge AI acts as a combination of machine learning

inferences and edge computing that enables local processing

of data to support decreased latency and reduce bandwidth

and reinforce privacy [3]. Ultra-low latency real-time

operating systems (RTOS) architected as a control systems

application, in turn, provided extreme latencies but had no

native packages to support dynamic memory allocation and

tensor-based data storage needed by neural-network tasks. A

taxonomy posted by Gill et al. (2024) classifies Edge AI

systems based on processing stratum (cloud, fog, edge

device) and assigns the importance of RTOS layer as the

real-time inference centerpiece.

B. TinyML and Microcontroller Inference Engines

TinyML has gained popularity and has quickened the

development of inference on microcontrollers with a

memory footprint that is in kilobytes. Venkataramanan et al.

(2023) in their recent work present architectures of

embedding ML models in real-time operating system

(RTOS) firmware, where the advantages of static allocations

of tensor buffers is mentioned, the advantages of network

quantization offline and deployment, and use of operator

libraries like CMSIS NN. Singh et al. (2023) additionally

show that RTOS task structures can be co-designed with

machine learning model execution cycles to ensure

dependable execution time of tasks with deterministic

deadlines even in presence of severe memory limitations.

C. AI-Enhanced RTOS Extensions

Recent research efforts targeted at closing the gap between

conventional real-time operating systems (RTOSs) and the

computational requirements of machine learning (ML) have

resulted in the development of a number of AI-centric

runtimes [4]. A similar interface Zephyr Kenning Runtime

specifies a homogeneous API to communicate with various

inference backends (TensorFlow Lite Micro, microTVM,

CMSIS NN), which enables on-device model testing and

benchmarking. The FreeRTOS + TFLite Micro has also

gained a tutorial to help users integrate the TensorFlow Lite

for Microcontrollers framework into FreeRTOS projects to

automatically manage memory-pools, to dispatch operators

using DMA-accelerated paths, and to utilisetickless idle-

modes to maximise both perceived inference performance

and power-efficiency [5]. Last, LiteRT for Microcontrollers,

a bare-bones counterpart to Google TensorFlow, shows that

a low-weight micro runtime, weighing only 16 KB, is

capable of running uncomplicated vision and keyword-

spotting models without full-fledged operating-system

support.

D. Benchmarking Frameworks and Formal Methods

Application-specific standardized benchmarking, e.g.,

Kenning evaluation application, allows comparing RTOS

platforms with the same CNN workloads. The findings

demonstrate that the optimized kernel of Zephyr has sub-

millisecond jitter, but commercial RTOS (such as ThreadX)

use preemption threshold to get maximum throughput. At

the same time, works on formal proving and WCET analysis

of neural network inference chains on RTOS kernels are

emerging, which can provide the basis of certifiable AI in

safety-critical areas, although there is little full-scale study

at present. Table 1 below gives an overview of important

RTOS milestones of Edge AI.

Table 1: Key RTOS milestones for Edge AI.

Year Key Development
2019 TinyML concept defined formalization of ML on microcontrollers
2022 TensorFlow Lite for Microcontrollers setup guide released

2023 Zephyr Kenning runtime launched, unifying inference back-ends
2024 Edge AI taxonomy & systematic review published
2025 Zephyr’s Kenning gains improved AutoML integration features

System Requirements and Design Considerations

An edge artificial-intelligence workload real-time operating

system design should focus on minimising deterministic

worst-case latency and jitter. This requires a pre-emptive

scheduler at the kernel level that has priority, together with

either a pre-emption threshold algorithm or deadline-

monotonic scheduler to provide support of strict deadlines
[6]. HEW-assistance tools like the ARM Nested Vectored

Interrupt Controller (NVIC) and the Data Watchpoint and

Trace (DWT) cycle counter have to be utilized to quantify

the interrupt-to-task latencies and on minute-grain

instrumentation [7]. The system also benefits through tickless

or adaptive tick modes and can reduce processor idleness;

that is, they remove period tick timer-tick interrupts and

save interrupt jitter and increase the timing predictability.

Comprehensive care should be taken in optimising context-

switch paths with an eye in minimising the sets of register

saves and restores additionally avoiding unnecessary system

calls so as to maintain task-switching latencies within sub-

microsecond range in case of Cortex-M and RISC-V

microcontrollers.

https://researchtrendsjournal.com/
https://researchtrendsjournal.com/

International Journal of Trends in Emerging Research and Development https://researchtrendsjournal.com

90 https://researchtrendsjournal.com

Fig 1: Context-Switch Time Comparison

The results of experimental findings which are shown in

Figure 1 indicate that context switch latency on Cortex M4

is reduced to 1.8 6s due to migration of tick based scheduler

to tickless operation. The decrease in latency is attributed to

the fact that periodic timer interrupts are completely avoided

during processor idle time; not only does that reduce the raw

time that context switches take, but also reduces jitter since

spurious wake-ups are fewer. Real-time operating systems

(RTOSs) must meet a very strict footprint constraint on edge

AI systems, often restricted to tens or hundreds of kilobytes

of RAM and flash memory. This means that all critical tasks

should use the static memory allocation, whereas the heap,

that should be carefully maintained, needs to provide

dynamic creation of tensor buffers. The pattern follows the

method to reduce fragmentation and peak allocation times

such as region based memory pools, object pool allocators,

and generation of compacted memory layout at compile-

time. In addition, zero-copy DMA transfers are required: the

RTOS has to provide lock-free queues or mailboxes

primitives to enable inference engines to enqueue and

deplane buffers directly to the hardware accelerators, thus

maximizing throughput reducing latency jitter.

The other requisite is its flawless adjacency with the

contemporaneous AI inference frameworks. The RTOS

should also provide APIs to load pre-trained binary models,

version and unload them and also make sure that tensor

lifecycles do not go out of task lifecycle [8]. Making this

coordination happen, the native thread abstractions are

extended with specialized, so-called AI tasks, containing

model context, operator kernels, and dedicated memory

areas. With such libraries provided by the vendors, e.g.

CMSIS NN, TensorFlow Lite for Microcontrollers, or

Kenning interface with Zephyr, being implemented as part

of the scheduling subsystem, the RTOS is able to offload

convolution, pooling, and activation functions to DSP or

accelerator cores, and schedule performance-sensitive

operator kernels on high-priority threads with minimal

overhead.

Edge nodes operating on batteries are required to follow

power-conserving approaches that are very strict. In this

regard, the real-time operating system needs to introduce the

advanced policy mechanisms that plan the manipulation

between run, sleep and deep-sleep states synchronously with

the AI workload conditions [9]. A tickless idle mode can be

launched by an inference-driven idle handler, and can pause

clock activities of peripheral devices selectively until a

peripheral will be ready next time of data-ready interrupt. It

can perform dynamic voltage and frequency scaling (DVFS)

at a proficient granularity, enabling the system to reduce

core frequency during background work that can not break

the AI deadline without wasting cycles on a high-priority

process [10]. In addition, profiling hooks and energy-aware

scheduling have the ability to tweak inference rates or

quantization level of a model dynamically on the fly, to

extend life-time of operation.

Secure execution environments are also essential where you

want to host potentially sensitive Artificial Intelligence

workloads on an untrusted platform or in a sharing

environment. In this case an RTOS has to include Memory

Protection Units (MPUs) or Memory Management Units

(MMUs) to give isolated execution contexts to each AI task,

avoiding inadvertent access to memory or data leakage.

Some boot chain and code signing capability is vital to

ensure that no tampering of model binaries and operator

kernels has occurred between creation and the point they are

executed. Encryption of storage plus in-flight data

encryption using hardware accelerators of AES or SHA

ensures model integrity and secrecy at run time and allows

edge AI to protect safety- and security-critical devices like

medical equipment and industrial controls. Figure 2 defines

the description of each primary RTOS requirement in terms

of three analytical categories, namely, overheads of

execution, the complexity of implementation, and the

maturity of the ecosystem, based on a scale of 1-5. Stern

latency assurances, such as, have high overhead (5) but fair

maturity (3), testifying to the extent of engineering required

to tune RTOS kernels to hard real-time capability. On the

other hand, security mechanisms receive perfect scores of

overhead and complexity (5) and have an industry supported

full suite of ISO and industrial certifications which result in

the highest score of maturity (4).

https://researchtrendsjournal.com/
https://researchtrendsjournal.com/

International Journal of Trends in Emerging Research and Development https://researchtrendsjournal.com

91 https://researchtrendsjournal.com

Fig 2: Requirement vs Metric Heatmap

RTOS Platforms for Edge AI

FreeRTOS

FreeRTOS has been carrying on as one of the widely used

open-source real-time operating systems (RTOS) utilized in

edge-AI applications on microcontrollers. Its lightweight

nature backed by its expansive system of extensions

explains how it became widespread [11]. The actual size of

the core is just 512-1024 B of ROM, and only 1512 B of

RAM in the typical (default) configuration, assuming the

compiler uses default memory allocator and scheduler

primitives. The scheduling architecture is of the old

fashioned form where scheduling is based on priorities, pre-

emptions and there is an available tickless mode to

minimize jitter and power dissipation. FreeRTOS itself does

not include libraries to do inference but community and

commercial extensions, including ports of TensorFlow Lite

for Microcontrollers or CMSIS NN operator kernels, allow

on-device neural network inference. Moreover,

deterministic tensor buffer allocation that is necessary to

achieve hard real-time AI deadlines in FreeRTOS is

possible due to the availability of static memory pools and

configurable heap schemes.

Zephyr

Zephyr refers to a free and open-source real-time operating

system (RTOS) having an Apache license. It has

component-based architecture and is compatible with ARM

as well as RISC V and x86 families of processors [12]. By the

2025 release, the kernel may be set to a minimal footprint of

20 40 kilobytes on small-scale applications. Using a

modular build system allows the developers to choose only

the particular set of subsystems, drivers and middleware

needed in their project. In the case of basing the application

usage on neural networks, the Kenning runtime library is

offering a common API to load models and to run them on

different backends like TensorFlow lite Micro, microTVM,

and CMSIS NN besides supporting it with in-built

benchmarking feature. Zephyr implements preemptive

priorities scheduling as well as cooperative scheduling, and

its idling feature is tickless, which helps to avoid latency

variability and waste energy on the system. There is

optional Memory Protection Unit (MPU) layer, and it can be

integrated with secure boot to further increase security.

ThreadX

One of the features that make Azure RTOS ThreadX stand

out, so far, is preemption threshold scheduling. In that, a

preempted thread may delay being preempted until the

preemption threshold is reached, and the overhead due to

context switching is reduced and the worst-case response

times get close to the pure context-switch latency. ThreadX

kernel can be used with less memory footprint as it takes

less than 2 kilobytes of code space on ARM cortex-M

devices. It allows priority inheritance and mutexes with

built-in deadlock avoidance thus making it adequate in

mixed criticality edge-AI tasks. Integration with AI is

normally through connecting to TensorFlow Lite Micro or

inference libraries supplied by the vendor. The mature

middlewear ecosystem in ThreadXis providing TU V and

UL certification by providing connectivity, file systems, and

security- Net X Duo, FileX and TLS.

VxWorks

The VxWorks 7 of Wind River is a high-performance RTOS

that has been commercialized to work on safety and

security-certified edge nodes. Symmetric multi-processing

(SMP) and asymmetric multi-processing (AMP) are both

configured on multi-core CPUs and all the memory

management unit (MMU) protections have been fully

integrated [13]. VxWorks is also now integrated with a

prevalidated NPU acceleration stack with DeepX to support

transparent offloading of convolutional, and transformer

kernels to hardware accelerators. The footprints of typical

systems start at about 100 kB and can be additionally

minimized as a result of customizable profiles. VxWorks 7

is also optimized to support mission-critical AI-enabled

edge applications because of its deterministic scheduler,

secure boot, support of code-signing capabilities, and other

safety packages (ISO 26262 and DO 178C).

https://researchtrendsjournal.com/
https://researchtrendsjournal.com/

International Journal of Trends in Emerging Research and Development https://researchtrendsjournal.com

92 https://researchtrendsjournal.com

Table 2: Comparison of RTOS Platforms for Edge AI.

RTOS Kernel Type Footprint Scheduling AI Integration Security / Certs NPU Support

FreeRTOS
Preemptive

priority

5–10 KB ROM;

~15 KB RAM

Priority-based,

tick/tickless modes

Third-party

TFLite-Micro,

CMSIS-NN; static pools

Optional MPU; OTA

security extensions

Via DMA/mailboxes

(no native support)

Zephyr
Modular

microkernel

~20–40 KB

(configurable)

Preemptive +

cooperative; tickless idle

Kenning unified API

(TFLM, microTVM,

CMSIS-NN)

MPU, secure boot;

Zephyr security

subsys

Community-driven

accelerator APIs

ThreadX Picokernel ~2 KB (core)
Priority +

preemption-threshold

Linkable TFLM; vendor

DSP/accelerator linkages

NetX Duo/TLS;

TÜV/UL certified

Indirect via scheduling

primitives

VxWorks
Monolithic /

SMP
≥100 KB

Fair-share + priority;

deterministic

Native SDKs for NPU

offload (DeepX

collaboration)

MMU, secure boot,

code signing;

ISO/DO-178C

Built-in NPU/AI

accelerator support

Table 2 is a comparative analysis of the commercially

available RTOS, according to the parameter of the footprint,

the scheduling level, the support of the AI framework, and

the security features which allows a practitioner making a

decision about an optimal RTOS to deploy an edge AI

application.

Performance Benchmarking and Evaluation

An in-depth comparison of the effectiveness of the usage of

real-time operating systems (RTOSs) with regard to edge

artificial intelligence requires the adoption of a

homogenously constructed convolutional neural networks

(CNN) inference pipeline. In that regard, a standardised

CNN which consisted of 3 convolutional layers, 2 fully

connected layers and activation functions rectified linear

unit was quantised in 8-bit integer format following post-

training quantisation method in the Tensorflow Lite toolset.

This model was implemented in an STM32H7 development

board (ARM Cortex-M7 at 480 MHz, 2 MB Flash and 1

MB SRAM) where power consumption was measured using

high-precision shunt resistor and an oscilloscope. Best

practice configurations were used on each RTOS: tickless

idle and CMSIS NN operator kernel were used with

FreeRTOS; Kanning enabled and tickless idle was used with

Zephyr; pre-emption- threshold scheduling was used with

ThreadX, and the VxWorks was used in the DeepX SDK to

take the NPU offload. The resulting figures included (i) end-

to-end inference latency (when the data is available to when

it is classified), (ii) worst-case latency jitter measured over

1,000 runs, (iii) average CPU utilisation during an inference

burst, and (iv) energy consumed per inference.

Inference Latency and Jitter

According to experimental results, Zephyr-based inference

activities guided with a Kenning kernel possess an average

latency of 12.3 milliseconds, which happens in a small jitter

envelope of ±0.5 milliseconds, where these advantages are

caused by the diligent architecture of the kernel as well as

its improved memory management strategies that reduce the

number of interrupt-induced distortions. Similarly,

FreeRTOS (limited to using CMSIS-NN operations only)

has a slightly higher average inference latency of 13.8

milliseconds and high jitter, of up to 1.1 milliseconds,

because of its dynamic memory allocator and the additional

periodic interrupts that are generated due to it. In contrast,

not only does ThreadX put out even slower throughput

compared to FreeRTOS (mean inference latency of 11.7

milliseconds), but also alleviates per-inference overhead, in

both cases due to its pre-emptive, per-batch threshold

scheduler which batches context switches to small degrees.

And, lastly, the VxWorks kernel, running convolution on an

external NPU, creates the shortest latency of 8.5

milliseconds; again, this lowest latency comes at the cost of

a larger code footprint and an added cost of loading both an

NPU driver and a model binary to high-speed external

memory.

CPU Utilization and Power Consumption

The inference bursts showed that most of the time the CPU

spent on Zephyr was close to 78 percent, which showed

effective division of labor between the kernel and inference

functions. FreeRTOS was utilized to a maximum of 85

percent (both inferences and background housekeeping

work). ThreadX recorded 70 percent showing the success of

its thresholded preemption in putting the loading within a

few, longer execution windows. In VxWorks offloads only

40 percent of the CPU was utilised with the NPU doing

most of the convolutional work. With regard to energy per

inference, Zephyr 0.85 mJ, FreeRTOS 0.92 mJ, ThreadX

0.80 mJ and VxWorks 0.65 mJ were all seen to be the most

energy efficient due to hardware acceleration in

combination with a real time offload framework.

Analysis of Trade-Offs

These findings show prime tradeoffs: open source RTOS

such as Zephyr and FreeRTOS provide small, energy

efficient inference at moderate latency, and are appropriate

in deeply resource-restricted devices without external

accelerators. ThreadX uses scheduler optimizations that

balance between footprint and throughput, which causes it

to fit well with mid range platforms of MCU. And although

VxWorks supports the lowest latency and energy per

inference, it has greater system requirements and licensing,

making it better suited to a high end or safety critical

application where inference acceleration by NPU is a safety

certification requirement [14]. All in all, the benchmarking

serves to emphasize once again that the best RTOS should

reflect on the main successful factor in an edge AI

application: latency, energy efficiency, or ecosystem

maturity.

https://researchtrendsjournal.com/
https://researchtrendsjournal.com/

International Journal of Trends in Emerging Research and Development https://researchtrendsjournal.com

93 https://researchtrendsjournal.com

Discussion

Fig 3: RTOS Footprint vs. Inference Latency with Certification Maturity

Figure 3 shows the trade off space in which RTOS

platforms have dissimilar footprints according to the bubble

size that signifies test level. VxWorks (100=99 to 110 KB

footprint, 8.5 to >16 ms latency, maturity 5) is the obvious

choice to win on latency and certification at the expense of a

large footprint. ThreadX (2KB, 11.7ms, maturity 4) and

Zephyr (30KB, 12.3ms, maturity 3) fall in the middle

ground in both resource demands and response times, and

FreeRTOS (15KB, 13.8ms, maturity 2) is the lowest-

resource footprint and slowest one. This diagram highlights

how many-folds the conundrum of choosing an RTOS to

use in edge AI installations may be.

The architecture in scheduling has strong implications on

the energy profile as well as latency in edge AI workloads.

Using preemption threshold model in ThreadX, the same

raw throughput and energy savings could be achieved in

comparison to traditional tickless kernels where the context

switching came to be bundled into fewer longer execution

windows, indicating that there can be a sweet spot between

hard-real time scheduling guarantees and AI batch

scheduling. In the meantime installations like those in

Zephyr tickless idle implementation showed that by

completely removing periodic interrupts, not only was jitter

reduced, but it also as possible to implement both very

aggressive power down strategies during the idle phase

between inference bursts to save significantly more energy

per inference (greater than 7%). Such outcomes highlight

the need to achieve co optimisation between the RTOS tick

policy, interrupt architecture, and power management hooks

in the case of imposing a tight latency or energy budget

constraint.Use of advanced computer power on the realistic

embedded platforms depends on the level of maturity of the

ecosystems and the level of tooling support that can be

availed. VxWorks VxWorks is unique in the tight gauge of

seamless NPU integration and ISO/IEC/IEEE safety

packages, which can significantly reduce time-to-market in

regulated space, including automotive, medical, and

aerospace, but in the open-source RTOS setting, custom

porting and thorough internal checking are often necessary.

As a result, programmer-pleasing metrics including

commercial support packages, certified driver bundles and

integrated development environments (IDEs) tend to

outshine raw performance, especially in situations where

long term maintenance and liability are the prime concerns.

Security and memory management also makes selection

more complex. Static allocation model in FreeRTOS and

Zephyr limits the risk of fragmentation but creates the

danger of overprovisioning in case of evolutions of tensor

buffer [15]. By comparison, RTOS kernels supporting

integrated MPU/MMU such as VxWorks and Zephyr with

its optional MPU layermake it much simpler to enforce

memory isolation between AI workloads and system

services. Isolation of this kind is critical to the security of

sensitive data and meeting security certifications. Additional

members of the RTOS evaluation matrix are secure boot and

software signing that were in the realm of high-end systems

but are now increasingly expected even in microcontroller-

level deployments.

Finally, an optimal RTOS selection appears after the

balancing of the requirements of a certain application with

the limits of the platform. In applications where AI

capabilities are needed but the cost of computing and battery

power are paramount, embedded AI where the AI model is

small or deeply embedded, such as battery-powered sensors

and wearables, FreeRTOS or Zephyr with well-integrated

TensorFlow Lite Micro or CMSIS NN is sufficiently

lightweight and performs well. Because mid-range

microcontroller ThreadX systems may need deterministic

batch inference throughput, like industrial controllers and

smarts appliances, its scheduling algorithm, preemption

threshold, and the rich middleware support make creating

deterministic batch inference easier with little engineering

effort. Nodes that manage safety- or security-critical

applications, such as automotive Advanced Driver

Assistance Systems (ADAS), or medical diagnostic applied

to implantable devices, need VxWorks with its certified

NPU offload, complete MMU support, and thorough end-to-

end safety packages.

https://researchtrendsjournal.com/
https://researchtrendsjournal.com/

International Journal of Trends in Emerging Research and Development https://researchtrendsjournal.com

94 https://researchtrendsjournal.com

When viewed through the prisms of resource limitations,

scheduling infrastructure, maturity of the ecosystem, and the

security positioning of edge AI deployments, practitioners

can enter the design space of edge AI deployments, which

has complex interdependencies and choose a platform that

best balances between their technical requirements and

business goals.

Future Directions

Over time, the already well-developed RTOS kernels will

need more than mere real-time scheduling capabilities to

schedule heterogeneous compute fabrics in an edge AI

environment. One of the most promising efforts is the

creation of integrate scheduler systems that have inherent

knowledge of and control regarding CPU, DSP, GPU and

NPU resources and operate under the same real-time policy,

so that the migration and loading of work across

accelerators can be dynamic, achieving optimization, and

the deadline obligations not be violated. To supplement that,

studies on AI-assisted scheduling, i.e. when the lightweight

machine-learning model estimates how long each concern

requires to complete and adjusts the priority or voltage-

frequency mapping, may additionally tune down latency and

power consumption.

RTOS-based neural networks verification procedures

deserve more attention. Incorporation of WCET analysis

tools with control of not just control flow, but also data

flow, via quantized operator kernels, would allow providers

to gain provable bounds on worst-case end-to-end inference,

a requirement of certification of AI-enhanced controllers in

autonomous vehicles and medical devices. It is an open

challenge, though, to extend these techniques to more recent

behaviors, like online updating of a model, or adaptive

quantization.

Delivered edge AI systems facing adversarial environments

shall become increasingly important in terms of security and

isolation. The future version of kernels can incorporate the

module of runtime attestation that constantly checks the

integrity of model binaries and feedback of inferences using

on-chip cryptographic accelerators when possible to incur

little performance costs. In combination with new memory-

safe languages or AI task sandboxing, these would drop the

risk footprint of learning on-device, and eliminate sensor

spoofing or model poisoning attacks.

Last but not least, the development of RTOS configuration

and neural network architecture will be automated, as

resource-aware neural architecture search (NAS) with static

analysis of the kernel footprints appears to streamline the

deployment pipeline. Such toolchains can produce neither

the RTOS build nor the optimal AI model targeted at a

specific hardware condition, since they will optimize their

code size, latency in their execution and power

consumption. This dual optimization results in smart

toolchain participants in quickening the time to market on

intelligent embedded products.

Conclusion

The paper presents a study of the way real-time operating

systems (RTOSs) make it possible to do high-performance,

deterministic workloads of edge artificial-intelligence (AI)

on resources-constrained devices. It provides an elaborate

classification of system requirements which- include latency

guarantees, memory efficiency, integration with AI

frameworks, power management, and security. The review

of four exemplary RTOS platforms FreeRTOS, Zephyr,

ThreadX, and VxWorks aims at demonstrating the trade-

offs of the platforms based on their architecture. A stringent

benchmarking methodology based on a standardized

convolutional-neural-network (CNN) inference pipeline,

measures the difference in latency, jitter and in CPU usage

and energy per inference. The generated results show that

although scheduler policies and accelerator offloading can

have significant effects on performance and efficiency, there

is no single RTOS, which performs consistently better in all

of the used metrics than the rest, since lightweight kernels

like FreeRTOS and Zephyr are the best choice in situations

when a node is very limited, ThreadX delivers the best

deterministic throughput in intermediate resource budget,

and VxWorks is the leader in latency and certification

compatibility in mission-critical systems. In the future,

further techniques to improve heterogeneous scheduling,

formal verification, security attestation and automated co-

design are going to work on the next generation of RTOS

kernels, further erasing the line between general-purpose

operating systems and AI accelerators. The matching of

RTOS capabilities with the specific needs of edge AI will

open up new possibilities of application that will provide

intelligent behavior, combined with uncompromised real-

time guarantees.

References

1. Chang Z, Liu S, Xiong X, Cai Z, Tu G. A survey of

recent advances in edge-computing-powered artificial

intelligence of things. IEEE Internet of Things Journal.

2021;8(18):13849–13875.

2. Tabish R, Pellizzoni R, Mancuso R, Gracioli G,

Mirosanlou R, Caccamo M. X-Stream: Accelerating

streaming segments on MPSoCs for real-time

applications. Journal of Systems Architecture.

2023;138:102857.

3. Li E, Zeng L, Zhou Z, Chen X. Edge AI: On-demand

accelerating deep neural network inference via edge

computing. IEEE Transactions on Wireless

Communications. 2019;19(1):447–457.

4. Jain P, Pateria N, Anjum G, Tiwari A, Tiwari A. Edge

AI and On-Device Machine Learning for Real Time

Processing. International Journal of Innovative

Research in Computer and Communication

Engineering. 2023;12:8137–146.

5. David R, Duke M, Jain S, Reddi VJ, Jeffries N, Li J, et

al. TensorFlow Lite Micro: Embedded machine

learning for TinyML systems. Proceedings of Machine

Learning and Systems. 2021;3:800–111.

6. Deng S, Zhao H, Fang W, Yin J, Dustdar S, Zomaya

AY. Edge intelligence: The confluence of edge

computing and artificial intelligence. IEEE Internet of

Things Journal. 2020;7(8):7457–7469.

7. Horst O, Wiesböck J, Wild R, Baumgarten U.

Quantifying the latency and possible throughput of

external interrupts on cyber-physical systems. arXiv

preprint arXiv:2009.00506. 2020.

8. Lin S, Zhou Z, Zhang Z, Chen X, Zhang J. On-demand

accelerating deep neural network inference via edge

computing. In: Edge Intelligence in the Making:

https://researchtrendsjournal.com/
https://researchtrendsjournal.com/

International Journal of Trends in Emerging Research and Development https://researchtrendsjournal.com

95 https://researchtrendsjournal.com

Optimization, Deep Learning, and Applications.

Springer; c2021. p. 151–168.

9. Wang Y, Yang K, Wan W, Mei H. Adaptive energy

saving algorithms for Internet of Things devices

integrating end and edge strategies. Transactions on

Emerging Telecommunications Technologies.

2021;32(8):e4122.

10. Devadas V, Aydin H. On the interplay of

voltage/frequency scaling and device power

management for frame-based real-time embedded

applications. IEEE Transactions on Computers.

2010;61(1):31–44.

11. Chong N, Jacobs B. Formally verifying FreeRTOS’

interprocess communication mechanism. 2021.

(Unpublished or conference/workshop presentation-no

full source provided).

12. Boddula KK, Mahapatra K, Swain AK, Mohanty JP.

Advanced IoT-Based Pollution Monitoring: Harnessing

Zephyr RTOS and AWS For Real-Time Data

Management. In: 2024 IEEE 21st India Council

International Conference (INDICON). IEEE; c2024. p.

1–6.

13. Liu J, Gao X, Jiang B, Yang S, Zhang Z. Deterministic

replay for multi-core VxWorks applications. In: 2017

International Conference on Dependable Systems and

Their Applications (DSA). IEEE; c2017. p. 118–25.

14. Garg N, Singh D, Goraya MS. Energy and resource

efficient workflow scheduling in a virtualized cloud

environment. Cluster Computing. 2021;24(2):767–797.

15. Musaddiq A, Zikria YB, Hahm O, Yu H, Bashir AK,

Kim SW. A survey on resource management in IoT

operating systems. IEEE Access. 2018;6:8459–8482.

Creative Commons (CC) License

This article is an open access article distributed under

the terms and conditions of the Creative Commons

Attribution (CC BY 4.0) license. This license permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

https://researchtrendsjournal.com/
https://researchtrendsjournal.com/

