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Abstract 

The speed of growth in demand for digital services has created an enormous rise in data-center energy usage, raising considerable doubts 

about its sustainability, not only to the environment but also to the operating costs. The given paper presents a MATLAB framework that 

could be used to explore and optimize energy consumption in the data center, specifically, intelligent workload scheduling and temperature-

aware cooling. The model enables dynamic distribution of workloads in order to reduce power consumption without losing performance. 

Empirical analysis indicates that optimized workload packing can reduce overall IT power consumption at the workload level by as much as 

19 percent, and thermal-aware cooling provides further energy savings. The obtained tool creates a replicable instrument for the 

investigation of sustainable computing strategies and assists to achieve more significant efforts to reduce the carbon footprint of digital 

infrastructures. 

 

Keywords: Energy-Efficient Data Centers, Green Computing, MATLAB Simulation, Power Usage Effectiveness (PUE), Sustainable Digital 

Infrastructure, Thermal-Aware Cooling, Workload Scheduling 

  

1. Introduction 

The fast pace of digitalization that is currently taking place 

in modern economies has caused an unparalleled increase in 

data-center consumption. As the primordial coupled point 

among cloud computing, artificial intelligence and big-data 

analytics, data centers have come to form one of the largest 

consumers of power in the overall ICT-sector. Recent 

estimates showed that more than 1% of the world’s 

electricity was being consumed by such facilities and that 

this number is expected to rise unless it is countered by 

more efficient day-to-day operations. One such issue is the 

obvious conflict between performance and energy 

efficiency. Conventional data centres regularly maintain an 

uneven load figure, which causes inordinate power usage by 

both the computing infrastructure and the cooling systems. 

This pressure has led to the development of energy 

conscious computer strategies, all of which are generally 

compressed in the term green computing [1]. With workload 

consolidation and dynamic resource provisioning and 

increased efficient cooling systems green computing aims to 

minimize the eco-footprint of IT assets. 

In the continuation of research, the current paper provides a 

MATLAB framework that finds an application in simulating 

energy consumption within a small-scale data center. The 

first goal is to emulate dynamic workload distribution 

among many servers and to evaluate the overall 

consequence on the total amount of power consumption and 

cooling requirements. Within MATLAB computing 

environment, the proposed model will allow one to test the 

algorithms in scheduling and thermal control methods, with 

the aim of maximizing energy use with respect to a 

reduction in computational throughput. The major 

contributions of the project are: a reconfigurable MATLAB 

based simulation framework of energy-conscious workload 

scheduling, a quantitative result of power savings achieved 

through different load-balancing techniques and cooling 

approaches and a case study on the use of optimization 

methods to minimize Power Usage Effectiveness (PUE). 

The study has a repeatable and scalable research design that 

can be used to research green computing, and practical 
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lessons that can be learnt to design more green data-centers. 

 

2. Background and Related Work 

The current digital world basically rides on data centers. 

They drive cloud computing, financial systems, scientific 

models and worldwide networks. Unluckily, this growth in 

numbers has led to some serious environmental nightmares 
[2]. According to a 2022 report by International Energy 

Agency (IEA), the global industry of data centers uses 

around 220 to 320 TWh of power annually, amounting to 

approximately 1 to 1.3 percent of the global electricity 

consumption. IEA estimates that this figure will increase 

even further with AI, edge computing and blockchain 

becoming even more widespread. Designers of facilities 

have been thinking about performance and reliability over 

the past years at the expense of energy efficiency [3]. This 

has led to a situation whereby a majority of data centers 

continue to perform under Power Usage Effectiveness 

(PUE) times which are way beyond the optimal rating of 

1.0. The Green Grid consortium has introduced PUE, which 

is merely a measure of the total facility energy divided by 

the IT equipment energy. When PUE is greater than 2.0, as 

it commonly was the case, then twice as much energy is 

allocated to cooling, lighting and power distribution as 

compared to that directly fed into computation. Greater 

awareness of climate change and increased energy costs in 

recent years has now compelled the industry to turn towards 

alternatives that involve the use of greener solutions [4]. 

Most organizations are now adhering to the guidelines of 

best practices organizations such as the Green Grid to 

increase PUE efficiency and also save on the general energy 

consumed. 

Speaking of energy consumption in a modern data center, 

the situation is dominated by four major energy consuming 

systems: servers and storage (taking around 45 percent of 

overall demand), cooling systems (taking 35 percent), 

networking hardware (allocating 15 percent), and various 

infrastructure components including lighting, power 

conversion units and control circuits (claiming about 5 

percent) [5]. These percentages are overviewed in Figure 1. 

The server infrastructure is the largest unremitting source of 

power consumption through the incessant computational 

loads that support hosted applications and the execution of 

virtual machines. Cold comes next, particularly in older 

buildings whose environmental control systems are not as 

advanced as they ought to be. Networking equipment, which 

is inevitably needed, uses relatively small current. The other 

5 percent is the total loads of lighting, power, conversion 

losses, and the auxiliary control system. Various corrective 

measures are being shaped to stem such ineffectiveness. 

Virtualization allows the dynamic redistribution of 

workload on physical machines, and this increases the 

utilization of servers. Dynamic Voltage and Frequency 

Scaling (DVFS) enables the processor power to be changed 

in real time according to real-time requirements. The 

movement of the workloads is done under thermal-aware 

scheduling with the purpose to reduce the occurrence of 

hotspots. When combined, all these innovations have 

stymied such metrics as Data Center Infrastructure 

Efficiency (DCIE) and Compute Power Efficiency (CPE). 

The present research area also examines predictive cooling, 

artificial intelligence resource control, and the adoption of 

renewable energy. The energy-saving tasks of virtualized 

cloud services were also coupled with performance 

constraints of the resource-allocation model that was 

proposed by Beloglazov. Dayarathna carried out a thorough 

survey of the methods of energy-efficient design of data 

centers (not physically, but the code on top and down the 

pile). The two studies supported the fact that simulation 

frameworks are required to ensure rigor is applied when 

testing optimization strategies prior to implementation. 

In practice MATLAB has become a popular choice as a 

platform to conduct such modeling activities, reflecting the 

powerful and sophisticated matrix-processing and 

visualization facilities. The behavior of the workload, the 

thermal behavior as well as flow of energy can be simulated 

by the investigators in order to determine how the 

scheduling algorithms and controls perform [6]. The current 

study builds on this pathway by building a Mona Lisa 

architecture of simulation environment that combines 

workload consolidation into thermal-aware cooling to 

provide an all-encompassing picture of data-center energy 

dynamics. Rising regulatory demands and a continually 

expanding sustainability agenda are making data-center 

operators use analytic tools that can balance the needs of 

operations and the forces of nature [7]. These simulation 

environments, of the type described above, offer a low cost, 

high quality vehicle in which to experiment and innovate 

and provide the foundation to a greener, smarter pallet of 

digital infrastructures. 

 

 
 

Fig 1: Estimated Global Data Center Energy Usage Distribution 
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3. Materials and Methods 

In our work the approach that we build our methodology on 

is based on a simulation framework that simulates and 

optimizes energy consumption in a small data center in 

MATLAB. It is specialized so as to be able to determine the 

effects of server workload distribution schemes on power 

consumption and hence cooling being required. 

We instantiate the facility modeled, which has a ten core 

number of servers, all of homogenous design and capable of 

working on an idle-to-full-load range, with workloads of 

minimal profiles and any heavy profile. This is based on the 

maximum-to-idle power ratio of 500 W versus 150 W that 

forms the base of a linear interpolation that forecasts 

consumption based on the workload intensity of each server. 

In the first simulation, workloads are randomly assigned to 

each server thus representing an unoptimized scenario 

where an arbitrary loading of tasks to servers is done with 

little regards to energy efficiency. Having determined the 

load levels of all servers, we calculate power consumption 

according to the interpolation model and conclude that all 

the machines are constantly working at various loads and, as 

such, have a great cumulative power consumption. 

To reduce this inefficiency we propose a work load 

consolidation algorithm. This process ranks the workloads 

of each server in the order of decreasing priorities and 

directs to the maximum utilization most of the workload on 

the fewest machines needed to meet the total demand. With 

it, it can turn off or switch into idle inactive servers, curbing 

the number powered up at any given time. By acting in such 

a manner, the algorithm will emulate energy-wise placement 

methodologies usually utilized in production-ready 

virtualized systems. 

At the same time we examine two cooling arrangements. 

The former uses a fixed-percentage cooling load, taking as 

an estimate those used in older facilities, by allocating 30 

percent of the total IT power to the cooling plant. The 

second and more advanced method integrates temperature-

based control which involves calculations of the cooling 

power only when the temperatures of the servers reach 

predetermined ceiling value- normally 28 °C. The dynamic 

approaches to fan speed or airflow process, in calculations 

of excess temperature and server thermal load, replicate 

dynamic strategies, and thereby represent interaction 

between thermal demand and cooling response. 

Through the combination of workload optimization and this 

thermal-sensitive model of refrigeration, the dual-layer 

structure of our framework allows carrying out an 

assessment of energy-saving potential with a more holistic 

approach. Key performance indicators that we collect 

include total IT power consumption, cooling power and 

Power Usage Effectiveness (PUE). In order to provide the 

robustness, we make several simulations of workload profile 

differences. Workload distribution, power consumption, 

temperature rise, and cooling demand are represented in bar 

graphs and pie charts using parallel visualizations that are 

created in MATLAB. Such visualizations shed light on the 

energy flow of the data center as well as confirm the success 

of optimization. 

Overall, the approach provides a reprogrammable, scalable 

framework of exploring sustainable operation of data 

centers in the MATLAB setting. 

 

4. Energy Optimization Strategies 

The optimization strategy incorporated into the modeling 

framework of the MATLAB simulation anchored on 

collating workloads in order to minimize the number of 

servers that are on duty. The system would allow most of 

the work to be delegated to a subdued pool of machines, 

thus permitting the system to shut down or otherwise spin-

down any under-utilized nodes, in effect, reducing the net 

energy costs. At the same time, a heating-regulated 

difference in temperature was proposed. The method 

measures the increase of individual-server temperature as a 

measure of certain characteristics of the workload and 

enables the cooling resources only when the thermal 

envelope crosses a fixed value. The remaining energy use is 

then gained by multiplying the temperature difference with 

the thermal load of the server under consideration. 

Temperature-sensitive cooling and workload consolidation 

therefore presented as an implementation of a more granular 

regimen of controlling the use of energy in an effective 

manner due to their compounding effect. These macro-

mechanisms of optimization and the implications that they 

have on the energy performance indices have been 

summarized in Table 1. 

 
Table 1: Summary of Energy Optimization Strategies for Data Center Efficiency. 

 

Optimization Strategy Description Expected Benefit 

Workload Consolidation Allocates tasks to fewer servers at higher loads Reduces server power consumption 

Idle Server Shutdown Powers down underutilized servers Minimizes standby power drain 

Temperature-Based Cooling Activates cooling only when temperature exceeds a defined threshold Improves cooling energy efficiency 

Dynamic Thermal Feedback Uses workload-to-temperature mapping to guide cooling decisions Prevents overcooling, saves energy 

Load-Aware Scheduling 

Algorithms 
Allocates tasks based on server efficiency and location Balances performance and energy use  

 

5. Evaluation and Results 

After running the MATLAB simulations, two different 

working-load-allocation strategies were tested; a so-called 

baseline setting where workloads were assigned randomly to 

all the available servers, and an optimized setting, where 

workloads were assigned by an algorithm that attempted to 

maximize server utilization, but did not violate the server 

latency constraints. An analysis performed on these two 

scenarios showed that the optimized scheme produced 

significantly lower energy consumption than the baseline 

distribution, which was the result of efficient distribution 

over resources that an optimized scheme promises. 
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Fig 2: Server workload distribution under random allocation 

 

In Figure 2, the load on 10 servers is depicted when jobs are 

discharged around campus in completely random manner. 

The servers gained varying loads, hence leaving some 

barely used machines and leaving others with an almost 

non-stop task. A combination of fully utilized and almost 

empty servers incurs power wastage a server that is not 

constantly used will use power. This picture supports the 

thought that dumping jobs on the machines with impunity 

forfeits opportunities to consolidate and ensuring the total 

amount of energy consumed does not decrease as much as it 

would if we planned better. 
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Fig 3: Power consumption per server under random workload distribution 
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The figure 3 presents the power consumption profile of each 

server in case of random workload condition. The power 

requirement of the server is linear in the workload pieced 

together with idle server to peak server power. The 

information ensures that it is obvious to not only learn but 

also understand that most of the servers tend to consume 

much energy all through without doing much computation. 

This case highlights the fact that baseline scheduling causes 

unnecessary increases in energy costs and puts it in a 

position to compare with this optimized configuration. The 

wide variation in the consumption between the servers is 

also indicative of the need of smart balancing of the 

workload to flatten the power curve. Conversely, the 

streamlined algorithm can reduce IT power footing by 

adamantly concentrating the loads on fewer computers. 

When simulation is done, the optimized allocation is seen to 

minimize IT power by 19%. Although the PUE (Power 

Usage Effectiveness) does not change all that much (due to 

power scaling of cooling with server power) the total facility 

power decreases significantly. 
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Fig 4: Comparison of server workload distribution before (top) and after (bottom) optimization 

 

Now, suppose we have a two-node facility and we are now 

going to discuss how our scheduling decisions will affect 

the energy our servers consume. The same situation is 

presented twice in figure 4; one with random distribution 

and one after optimization. The first row indicates what we 

have observed earlier, i.e. there is random workload 

placement, which distributes work to both the machines. 

The bottom panel below indicates how things turned out 

after we applied the optimization algorithm trying to wedge 

the majority of the workload onto a single server and 

leaving the other virtually idle. Since only some servers are 

now at 100 percent loads, the consolidated design can allow 

the remaining ones to drop to low-power or power-off 

status. The resultant utilization curve is denser and flatter 

and the overall IT power consumption level reduces 

dramatically. With temperature-based cooling, the image 

brightens further: turning off or throttling fans of a server 

reduces the cooling loads, and thereby yet more energy is 

saved. The introduction of thermal constraints into 

scheduler does not only make it interesting mathematically; 

it indeed provokes energy savings in real world. 

 

6. Discussion 

The MATLAB simulations reveal the extent to which the 

energy efficiency of data center can be increased using 

optimal allocation of the workload and implementing smart 

cooling algorithms. As we changed the layout of our 

workload, which was random to an optimized one, the IT 

power consumption reduced by an approximate 19%. This 

was made possible by moving tasks down to fewer active 

servers and this allowed the others to stay in idle or fully off 

mode. Although the transition does not reduce the metric of 

Power Usage Effectiveness (PUE) directly, it rein in the 

actual power consumption, a sure way to expenditure 

reduction as well as carbon footprint reduction. A 

temperature-based cooling policy also enhanced the model 

to make it closer to the real-life limitations. 
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Fig 5: Simulated server temperatures based on workload 

 

Figure 5 provides us with a snap shot of just how much heat 

is being produced by each of the servers and it is 

represented by the volume of work being done. The model 

presupposes the lack of change in the ambient temperature, 

and the workload increases the internal temperatures. As 

soon as a certain temperature, e.g. 28 °C is reached, the 

model turns on active cooling. Through this chart, we will 

be able to identify the locations where the workload bursts 

may cause hotspots, so that the cooling system will have no 

chance to handle the loads, or that certain component will 

endure problems. 
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Fig 6: (a) Random workload distribution (%), (b) Optimized workload distribution (%) 

 

Figure 6 indicates that the energy needed to cool the servers 

can be estimated based on the number of servers of all the 

servers and only those which are above the temperature 

threshold. Below that temperature there is no active cooling 
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of the servers which saves energy. We hope that through 

selective activation of cooling a smarter thermal 

management approach is achieved where there is specific 

hitting of cooling power as opposed to uniform distribution. 

It then has the effect of more efficiently dedicating the 

energy towards the cooling infrastructure. This result 

confirms the idea that by integrating workload data with 

thermal models fine-grained control of cooling is possible to 

exceed the use of static provisioning. 

In contrast to the fixed-percentage cooling models, this one 

is dynamic in that effort is made to improve cooling based 

on server-specific thermal loads. The simulation has proved 

that not every server needs to be cooled in the same amount 

of time, so the total power used in the cooling decreased 

because of optimized workload conditions. In consolidation, 

energy efficiency is improved, but server wear, hotspots of 

high temperatures may appear which can lead to shorter 

hardware life. It can even generate bottlenecks in 

performance when not used together with QoS policies and 

may need more complex monitoring and control tools. 

Despite these sacrifices, the net effect of these developments 

is supportive of systems-level approach to green computing. 

Instead of improving subsystems, methods of solving the 

overall system by combining power modeling, workload 

scheduling, and thermals have the best potential at 

maintaining sustainable operation. 

 

7. Environmental and Economic Impacts 

Data centers consume huge amount of energy and since a 

good portion of the energy used is still fossil-based, data 

centers contribute heavily to emissions of carbon gases. In 

this project, we tried the strategies to reduce the overall 

energy consumption based on the smarter scheduling of 

workload and dynamic cooling [8]. With a median carbon 

emission factor estimation of power (0.4 kg CO₂/ kWh), we 

may observe that the facsimiles to these optimizations can 

be translated into reducing carbon emissions directly [9]. To 

illustrate, suppose that the simulation will save 

approximately 500 W at all times all through the year, a 

total of 4380 kWh of electricity which is the equivalent of 

1.75 tones of CO₂ emissions diverted. In economic terms, 

the yearly savings of 500 W incur a benefit of close to 438 

dollars per rack in terms of electricity cost. The latter 

savings are linear with infrastructure size, and a very good 

case can be made in a large data center to energy-wise 

design. The overall cost of investment in control 

infrastructure and software is very temporary with most of 

these expenses being a one-time initiative. The framework 

would breakeven approximately between 1-2 years due to 

the existing electricity prices, and it already complies with 

the majority of the new requirements and standards in the 

industry, such as ISO 50001 and ASHRAE thermal 

standards and Greenhouse Gas Protocol, thus it is ready to 

face all the sustainability demands in the future [10]. 

 

8. Conclusion and Future Work 

We proposed a MATLAB framework of data center energy 

consumption modeling and optimization with the help of 

intelligent workload scheduling and a temperature-aware 

cooling control. We demonstrated that dynamic 

consolidation of workloads can eliminate as much as 19% of 

IT power use--that is, IT power use can be minimized 

without jeopardizing performance. In conjunction with 

temperature-driven cooling strategy, such techniques 

enhanced even more thermal efficiency, cutting wasteful 

cooling-related energy consumption. These outcomes 

illustrate the worth of the systems degree of energy 

optimization tactics-organizing the two IT workload 

management and structures control. MATLAB was a good 

platform in establishing and evaluating the framework as it 

provided an open platform that could be reused by both 

researchers and practitioners in the industry. It allows risk-

free exploration of the finicky interdependency between 

computational loads, power consumption and thermal 

features. 

In addition to energy cost, the offered plans will contribute 

to the overall goals of the organization (a reduction in 

carbon footprint, compliance with the law, and maintaining 

costs at a minimum in the long run). The approach is 

particularly applicable where medium-to-large-scale data 

centers are interested in increasing their sustainability at a 

low capital expenditure [11]. In future, the integration of 

renewable energy sources, such as solar and wind, into 

dynamic demand profiles can be studied to supplement 

them. Artificial intelligence, may also be utilized so that 

past data and current temperatures can be used to forecast 

and effectively manage loads and cooling requirements [12]. 

The model might be expanded to include economic cost 

accounting, carbon accounting and the trade-offs in latency, 

availability and energy consumption. 

It would be the next step to scale the simulation to edge 

computing or multi-tiered data centers architectures 

scenarios to enrich the model applicability. Integration of 

real-time telemetry data with which to test the model against 

operational environments would be able to increase the 

fidelity of the model, and provide data center operators with 

prescriptive information. With the changing digital 

infrastructure environment, tools and techniques such as the 

ones expressed within this paper will play an essential role 

in ensuring that as sustainability becomes more advanced, 

so does its performance. 
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