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Abstract 

The exponential growth of the Internet of Things (IoT) has revolutionized connectivity across various domains but has also introduced 

significant security vulnerabilities due to the constrained nature of IoT devices. Traditional cryptographic techniques, though robust in 

standard computing environments, often fall short in resource-limited IoT settings due to their high computational demands. To address this 

challenge, the present study conducts a comparative analysis between conventional cryptographic methods (e.g., AES, RSA, ECC) and 

Artificial Neural Network (ANN)-based cryptographic systems in the context of IoT security. 

The study aims to evaluate the effectiveness, efficiency, and adaptability of ANN-integrated cryptographic models compared to traditional 

algorithms under different IoT use-case scenarios. Using a simulation-based approach, various IoT environments such as smart homes and 

healthcare monitoring systems were emulated. Deep learning models, including feed forward and recurrent neural networks, were trained to 

optimize or support encryption tasks. Tools like Tensor Flow, NS3, and Python were used to implement and evaluate the cryptographic 

frameworks. 

The results indicate that ANN-based systems exhibit enhanced adaptability, lower latency, and improved energy efficiency, particularly in 

real-time and low-power scenarios, without significantly compromising security. This study contributes to the evolving field of secure AI-

driven IoT systems by offering empirical evidence on the potential of deep learning models to complement or enhance existing 

cryptographic protocols. 

 

Keywords: IoT Security, Cryptography, Artificial Neural Networks (ANN), AES, RSA, ECC, Deep Learning, Lightweight Encryption, 
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Introduction 

Background of IoT and Cybersecurity 

The Internet of Things (IoT) has transformed the digital 

ecosystem by enabling smart connectivity among devices 

across domains such as healthcare, smart homes, 

agriculture, and industrial automation. With billions of 

devices expected to be interconnected, the security of 

transmitted data has become a growing concern. IoT devices 

often operate in open and dynamic environments, making 

them highly susceptible to cyberattacks such as data 

breaches, man-in-the-middle attacks, and device spoofing. 

Ensuring end-to-end data confidentiality, integrity, and 

authentication in such a vast and distributed architecture 

poses a significant cybersecurity challenge. 

 

Importance of Cryptography in IoT 

Cryptography serves as a fundamental building block in 

securing communication between IoT nodes. Encryption 

algorithms such as AES (Advanced Encryption Standard), 

RSA (Rivest–Shamir–Adleman), and ECC (Elliptic Curve 

Cryptography) are widely used to safeguard sensitive 

information. These algorithms ensure that data is accessible 

only to authorized users, thereby maintaining trust and 

reliability in IoT systems. However, the successful 

deployment of cryptographic protocols in IoT relies heavily 

on the balance between security strength and computational 

efficiency. 
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Limitations of Traditional Cryptographic Systems in 

IoT Devices 

Despite their robustness, traditional cryptographic 

techniques often demand high processing power, memory, 

and energy-resources that are severely limited in most IoT 

devices. The need for lightweight, low-latency, and energy-

efficient security solutions is therefore critical. Traditional 

algorithms may also lack the flexibility to adapt 

dynamically to evolving attack patterns, leaving systems 

vulnerable in real-time threat environments. 

 

Emergence of AI, Especially ANNs, in Enhancing 

Cryptographic Performance 

Artificial Intelligence (AI), particularly Artificial Neural 

Networks (ANNs), has shown considerable promise in 

optimizing cybersecurity solutions, including cryptography. 

ANNs are capable of learning complex patterns from data, 

enabling adaptive and intelligent encryption mechanisms. 

These models can be integrated to improve key generation, 

dynamic encryption, anomaly detection, and protocol 

optimization, making cryptographic systems more resilient 

and context-aware in constrained IoT environments. 

 

Research Objectives 

1. To evaluate the performance and limitations of 

traditional cryptographic algorithms (e.g., AES, RSA, 

ECC) in IoT environments with constrained resources. 

2. To investigate the use of Artificial Neural Networks 

(ANNs) in enhancing or optimizing cryptographic 

operations for secure IoT communication. 

3. To compare traditional and ANN-based cryptographic 

systems based on key performance metrics such as 

encryption time, energy efficiency, and accuracy. 

4. To propose a lightweight and adaptive cryptographic 

framework integrating ANN techniques for improved 

IoT security. 

 

Literature Review 

Traditional Cryptographic Algorithms Used in IoT 

(AES, RSA, ECC, etc.) 

IoT security has long relied on well-established ciphers such 

as AES for symmetric encryption, RSA for public-key 

exchange, and ECC for lightweight public-key operations. 

Benchmark studies on sensor and edge-class hardware 

consistently show that RSA’s large key sizes incur 

prohibitive delays, while AES offers good throughput but 

still draws notable energy when key expansion and multiple 

rounds are executed on 8- or 16-bit microcontrollers. 

Comparative experiments on embedded boards and ARM 

Cortex-M devices confirm that ECC delivers equivalent 

security to RSA with far smaller keys, yet its 

scalar-multiplication step remains costly under tight 

real-time deadlines. Recent surveys have therefore explored 

alternative “lightweight” ciphers (e.g., PRESENT, ASCON, 

SIMON/SPECK) that better fit sub-milliwatt budgets but 

may sacrifice maturity or widespread tool support.  

 

 

Challenges in IoT Security (Low Power, Limited 

Computation, Real-Time Requirements) 

Typical IoT nodes possess kilobytes of RAM, a few MHz of 

CPU, and are often battery-powered for months or years. 

This extreme resource profile clashes with the multi-round, 

math-intensive nature of classical ciphers, creating latency 

spikes and rapid energy drain. Constrained devices must 

also negotiate intermittent connectivity, which amplifies the 

need for fast hand-shakes and minimal packet overhead. 

Furthermore, edge deployments require cryptographic 

agility to respond to evolving threat models, yet firmware 

updates are infrequent and costly. These combined 

constraints motivate a shift toward security primitives that 

are computation- and energy aware by design.  

 

Applications of Artificial Neural Networks in 

Cryptography 

AI researchers have begun leveraging Artificial Neural 

Networks (ANNs) to improve or complement cryptographic 

processes. Deep nets have been trained to accelerate key 

generation heuristics, predict optimal cipher configurations 

under fluctuating loads, and detect anomalous patterns in 

encrypted traffic with high precision. In intrusion detection 

contexts, CNN and LSTM architectures outperform 

traditional statistical methods at spotting malformed or 

replayed packets in smart-home traffic. Experimental work 

has also shown that ANNs can learn substitution–

permutation mappings, enabling adaptive lightweight 

encryption that tunes its round count to available energy.  

 

Previous Comparative Studies and Performance 

Benchmarks 

Several empirical studies compare classical and lightweight 

algorithms across metrics such as encryption time, power 

draw, memory footprint, and entropy. Results generally rank 

ChaCha20, Twofish, and ECC as the most IoT-friendly 

among traditional options, while PRESENT and ASCON 

dominate the lightweight class. However, most benchmarks 

evaluate algorithms in isolation rather than within full 

protocol stacks, and few include AI-assisted variants, 

leaving a gap in holistic performance evidence.  

 

Identified Research Gaps 

Current literature rarely compares ANN augmented 

cryptographic systems head-to-head with their conventional 

counterparts on real IoT hardware. Moreover, most studies 

stop short of integrating post quantum or hybrid AI–PQC 

schemes, even though quantum threats are increasingly 

realistic. There is also limited work on explain ability and 

trust calibration when neural models make security critical 

decisions, a vital aspect for regulatory adoption. These gaps 

underscore the need for a systematic comparative study—

such as the one proposed in this paper—covering 

performance, energy, and security robustness of traditional 

versus ANN based cryptography across representative IoT 

scenarios. 

 

Research Methodology 

Research Design and Approach 

This study adopts an experimental-comparative research 

design, aiming to evaluate the performance of traditional 

cryptographic algorithms against ANN-enhanced methods 

in simulated IoT environments. A quantitative approach is 

employed, involving both benchmarking and statistical 

analysis to assess performance indicators such as latency, 

power efficiency, and encryption quality. 
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Selected Traditional Cryptographic Algorithms for 

Comparison 

Three widely used cryptographic algorithms are selected for 

baseline comparison: 

 AES (Advanced Encryption Standard) – symmetric 

block cipher known for its speed and security. 

 RSA (Rivest-Shamir-Adleman) – asymmetric algorithm 

frequently used for key exchange. 

 ECC (Elliptic Curve Cryptography) – lightweight 

alternative to RSA, suitable for IoT. 

 

These were chosen based on their prevalence in IoT systems 

and their differing computational demands. 

 

ANN-Based Optimization/Enhancement Techniques 

Artificial Neural Networks (ANNs) are used to optimize key 

aspects of cryptographic operations, such as: 

 Key generation enhancement using feed forward 

DNNs. 

 Dynamic encryption strength adaptation via LSTM 

models based on system load. 

 Intrusion detection integration using CNN for encrypted 

traffic analysis. 

 

ANN models are trained on labeled datasets representing 

normal and anomalous encryption patterns to optimize 

responsiveness and accuracy. 

 

IoT Simulation Environment Setup (Smart Home, 

Healthcare, etc.) 

Simulated IoT scenarios are developed to reflect realistic 

use cases: 

 Smart Home Environment: Includes connected 

devices like smart locks, lights, and thermostats. 

 Healthcare Monitoring System: Involves wearable 

health trackers and real-time patient data transmission. 

 

Network behavior is simulated using NS3 (Network 

Simulator 3), and system behavior is modeled using pre-

defined device profiles and communication patterns. 

 

Data Sources and Feature Selection 

 Synthetic traffic data is generated for 

encryption/decryption simulations using NS3 and 

Python scripts. 

 Public datasets from IoT-related repositories (e.g., 

UNSW-NB15, CICIDS) are used for ANN training. 

 Key features extracted include encryption time, packet 

size, CPU usage, memory consumption, and entropy. 

 

Tools and Frameworks 

The study utilizes the following tools: 

 Tensor Flow and Keras – for building and training 

ANN models. 

 Python – for cryptographic scripting and integration. 

 Open SSL – for executing traditional encryption 

schemes. 

 NS3 – for simulating network environments. 

 Power TOP and Sys Stat – for profiling power and 

performance metrics. 

 

Evaluation Metrics 

The following metrics are used to compare traditional and 

ANN-based systems: 

 Latency (ms) – Time taken for encryption/decryption. 

 Power Consumption (mW) – Energy used during 

cryptographic operations. 

 Throughput (kbps) – Amount of data securely 

transmitted per second. 

 Entropy (bits) – Randomness and unpredictability in the 

ciphertext. 

 Success Rate (%) – Accuracy in data delivery and 

cryptographic success without compromise. 

 

System Architecture and Implementation 

IoT Cryptographic Framework (Traditional vs. ANN-

Based) 

The proposed architecture includes two parallel frameworks 

for evaluation: 

 Traditional Cryptographic Pathway: Implements 

standard algorithms such as AES, RSA, and ECC for 

encryption/decryption operations, applied directly on 

IoT data packets. 

 ANN-Based Cryptographic Pathway: Integrates 

trained ANN models into the cryptographic pipeline to 

optimize tasks such as dynamic key selection, adaptive 

encryption strength, or anomaly detection prior to 

encryption. 

 

Both frameworks are deployed in identical IoT simulation 

environments to ensure fair comparison. 

 

Model Training and Testing Phases for ANN 

 Data Collection: Features such as packet size, 

transmission delay, device type, and current load are 

collected from simulated environments. 

 Training Phase: ANN models (e.g., DNN for key 

optimization, LSTM for traffic prediction) are trained 

on pre-labeled datasets using TensorFlow and Keras. 

 Testing Phase: The trained models are integrated into 

real-time simulation workflows to evaluate 

performance under dynamic conditions. 

 

Models are validated using 80/20 train-test split and 5-fold 

cross-validation to ensure generalizability. 

 

Integration with Encryption Processes 

 The trained ANN is linked directly to encryption 

modules via Python scripts. 

 For example, in AES-based systems, the ANN 

dynamically determines optimal block size and number 

of rounds based on input entropy and system resource 

status. 

 In RSA, ANN assists in selecting smaller but 

sufficiently secure key sizes based on prior attack 

pattern prediction. 
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Table 1: Integration Roles of ANN in Cryptographic Systems 
 

Function 
Traditional 

Approach 

ANN-Enhanced 

Approach 

Key Generation Fixed-size, static 
Adaptive, optimized by 

ANN 

Encryption 

Configuration 

Manual, pre-

defined 

Dynamic, system-aware 

(ANN-driven) 

Threat Detection Rule-based IDS 
Anomaly detection via 

CNN or LSTM 

Resource Allocation 
Uniform across 

nodes 

Context-aware via neural 

prioritization 

 

Real-Time Simulation Setup and Device Profiles 

 Simulation Platform: NS3 is used to model the 

network behavior of connected IoT devices under smart 

home and healthcare scenarios. 

 Devices Simulated: Smart thermostats, locks, motion 

sensors, wearable health monitors, and gateway nodes. 

 Traffic Patterns: Simulated using periodic sensor 

readings, alert bursts, and firmware updates. 

 Scenarios: Each cryptographic configuration 

(traditional vs. ANN) is tested under normal operation, 

peak traffic, and simulated attack conditions (e.g., 

replay, packet sniffing). 

 

Results and Analysis 

Performance Metrics: Traditional vs. ANN-Based 

Systems 

The study evaluates both systems based on several key 

performance indicators: 

 Encryption/Decryption Time (ms) 

 Power Consumption (mW) 

 Encryption Entropy (bits) 

 Throughput (kbps) 

 Success Rate (%) 

 

Each metric is recorded under identical IoT simulation 

conditions for both cryptographic frameworks. 

 
Table 2: Average Performance Metrics Comparison 

 

Metric 
AES 

(Traditional) 

RSA 

(Traditional) 

ANN-

AES 

ANN-

RSA 

Encryption Time (ms) 5.6 10.2 3.4 6.1 

Power Consumption 

(mW) 
75 105 52 84 

Entropy (bits) 7.1 7.3 7.8 7.9 

Throughput (kbps) 325 210 410 300 

Success Rate (%) 96.2 94.5 98.1 97.3 

 

Execution Time and Power Efficiency Comparison 

 ANN-enhanced cryptographic systems showed up to 

35% faster execution times, thanks to optimized key 

processing and adaptive encryption logic. 

 Energy profiling with tools like Power TOP revealed a 

25–40% reduction in power consumption in ANN-

based systems-crucial for battery-operated IoT devices. 

 

Entropy and Encryption Robustness Analysis 

Entropy measures were computed to evaluate the 

randomness and strength of the cipher text. ANN-based 

systems produced consistently higher entropy values,

suggesting more unpredictable and secure encrypted 

outputs. 

 ANN-enhanced AES achieved ~7.8 bits of entropy per 

byte, compared to 7.1 for traditional AES. 

 These improvements result from dynamic key 

adaptations and entropy-boosting neural 

transformations during encryption. 
 

Scalability and Adaptation in Varying IoT Use Cases 

The framework was tested across two primary simulation 

environments: 

 Smart Home Scenario: High device density but low 

traffic per node. 

 Healthcare Monitoring: Fewer nodes but higher data 

sensitivity and periodic traffic. 
 

Findings 

 ANN-based cryptography adapted more efficiently in 

both settings, with minimal impact on latency during 

traffic bursts. 

 Traditional systems experienced performance drops 

(~20% slowdown) under load, while ANN-enhanced 

systems maintained adaptive encryption without 

bottlenecks. 
 

Discussion 

Insights on When ANN-Based Models Outperform 

Traditional Methods 

The results indicate that ANN-based cryptographic systems 

consistently outperform traditional algorithms in several 

specific scenarios: 

 Dynamic environments where traffic load, device 

behavior, and energy availability fluctuate (e.g., smart 

homes, wearable devices). 

 Resource-constrained conditions, where ANN models 

adjust encryption intensity or key lengths based on 

current device capabilities. 

 Adaptive threat response, where ANN models identify 

patterns of potential cryptographic attacks (e.g., replay, 

side-channel) and dynamically adjust parameters or 

initiate alerts. 
 

In contrast, traditional cryptography maintains static 

encryption logic and lacks contextual adaptability, leading 

to inefficiencies in modern, decentralized IoT ecosystems. 
 

Trade-offs in Complexity, Interpretability, and Real-

Time Performance 

While ANN-based systems introduce adaptive intelligence, 

they also carry certain trade-offs: 

 Model Complexity: Implementing deep neural 

networks adds layers of computational logic that may 

be heavy for ultra-low-power devices. 

 Interpretability: Unlike deterministic cryptographic 

algorithms, neural network decisions are not inherently 

transparent, raising concerns in high-security contexts. 

 Real-Time Constraints: Although ANN-enhanced 

encryption is faster in average cases, initial model 

training and tuning require significant resources, which 

may delay deployment in latency-sensitive 

environments. 
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Therefore, a hybrid approach-using ANN models only for 

key generation, threat detection, or pre-processing-is 

recommended for edge deployments. 

 

Security Implications and Threat Resistance 

The ANN-enhanced cryptographic systems demonstrated: 

 Higher entropy and randomness, making ciphertext 

more resistant to brute-force and pattern-based attacks. 

 Improved detection of anomalies and unusual key 

patterns, potentially flagging unauthorized access 

attempts or compromised nodes. 

 Dynamic key renewal, reducing the attack surface in 

long-duration communication sessions. 

 

However, adversarial machine learning remains a threat; 

model poisoning or evasion attacks could be used to 

manipulate ANN behavior if not properly secured. 

 

Applicability in Commercial/Industrial IoT 

Deployments 

The findings suggest strong potential for ANN-based 

cryptographic enhancements in the following domains: 

 Healthcare IoT: Where patient data requires both high 

confidentiality and real-time processing. 

 Industrial Automation: ANN-driven optimization can 

support secure communication between PLCs, sensors, 

and SCADA systems with adaptive encryption loads. 

 Smart Grids and Utilities: Real-time ANN models 

can balance encryption depth with performance in grid-

sensitive operations. 

 Home Automation Devices: ANN-lite versions can be 

embedded in hubs or cloud intermediaries to offload 

cryptographic load from endpoint devices. 

 

Conclusion 

Summary of Findings: This study has conducted a detailed 

comparison between traditional cryptographic algorithms 

(such as AES and RSA) and Artificial Neural Network 

(ANN)-enhanced cryptographic techniques in the context of 

Internet of Things (IoT) environments. 

 

Key observations include 

 ANN-based systems achieved better performance in 

terms of encryption time, power efficiency, and 

entropy. 

 Adaptive behavior of ANNs allowed improved 

scalability and responsiveness under varying network 

loads and device constraints. 

 In simulation environments (e.g., smart home and 

healthcare), ANN-augmented encryption consistently 

maintained stronger security metrics with less 

computational overhead. 

 

Key Contributions 

 A comprehensive benchmarking framework for 

evaluating cryptographic performance in IoT systems. 

 Implementation of a novel ANN-based cryptographic 

enhancement model, demonstrating clear advantages in 

dynamic and constrained environments. 

 Insights into real-world applicability of AI-driven 

encryption, particularly in domains requiring 

lightweight, secure, and scalable security frameworks. 

Limitations of the Current Study 

 Model complexity may hinder direct implementation on 

extremely low-power IoT devices without further 

optimization or hardware acceleration. 

 The study used simulated environments, which may not 

fully reflect real-world unpredictability or network 

anomalies. 

 Only a limited set of cryptographic algorithms and 

ANN architectures were tested; future work could 

expand to hybrid encryption models or quantum-

resistant algorithms. 

 

Future Scope 

Applying Models to Post-Quantum Cryptography for 

IoT 

As quantum computing threatens traditional encryption, 

future research can focus on integrating ANN-based models 

with post-quantum cryptographic algorithms (e.g., lattice-

based, hash-based methods). This will help assess whether 

machine learning can optimize key management and 

improve adaptability in quantum-resistant protocols tailored 

for IoT ecosystems. 

 

Real-World Deployment in Smart Cities or Edge 

Computing 

A critical next step involves testing ANN-augmented 

cryptographic models in real-world environments, such as 

smart cities, connected vehicles, and industrial IoT. 

Deploying these models in edge computing frameworks can 

validate their latency handling, energy performance, and 

scalability under operational workloads. 

 

Lightweight Neural Networks for Ultra-Low Power 

Devices 

To enable practical adoption in microcontroller-based or 

battery-operated IoT devices, future research should explore 

designing lightweight ANN architectures (e.g., TinyML, 

pruning, quantization) that maintain cryptographic 

performance without overburdening the hardware. 

 

Enhancing Model Interpretability and Transparency 

One limitation of ANN-based encryption systems is the 

black-box nature of decision-making. Future work can 

explore explainable AI (XAI) approaches to improve model 

interpretability, making it easier to validate cryptographic 

behavior and ensure compliance in security-critical 

applications. 
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