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Abstract 

Wireless Sensor Networks (WSNs) are pivotal in applications ranging from environmental monitoring to industrial automation, yet their 

reliability is often compromised by node and network faults. This study conducts a comprehensive comparative analysis of machine learning 

(ML) and deep learning (DL) models for fault diagnosis in WSNs, evaluating performance metrics including accuracy, false positive rate 

(FPR), computational overhead, and real-time applicability. Utilizing synthetic and real-world datasets, we tested SVM, Random Forest, k-

NN, CNN, LSTM, and Autoencoders. Results indicate DL models, particularly CNNs, achieve superior accuracy (95%) but incur higher 

computational costs, whereas ML models like Random Forest offer a balance between accuracy (89%) and efficiency. This paper provides 

actionable insights for selecting models based on application constraints, contributing to optimized WSN reliability. 
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1. Introduction 

WSNs are integral to IoT ecosystems but prone to faults due 

to harsh environments and resource constraints. Timely fault 

diagnosis is critical to maintain network integrity. 

Traditional methods lack adaptability, prompting the 

adoption of AI techniques. This paper addresses the gap in 

systematic comparisons between ML and DL models, 

guiding practitioners in model selection based on 

operational needs. 

Algorithms for fault-tolerant event region detection in 

WSNs are presented in this thesis. There are three main 

parts to it. Two distinct issues under fault-tolerant event 

region detection in WSN are covered in the first section. 

First, a technique for identifying malfunctioning sensors in 

event detection applications is put forth. The impact of a 

noisy communication channel on event detection is then 

examined. An examination of the best threshold decision 

strategy for non-binary fault-tolerant event region detection 

that takes into account the probability of both symmetric 

and non-symmetric sensor faults is presented in the second 

section. The statistical properties of sensor observations in 

the neighborhood of an event's occurrence are impacted by 

its occurrence (Veeravalli 2001) [1]. A moving window 

approach for sequentially detecting changes in the mean 

value of the observations generated by sensor nodes in 

WSNs is shown in the third part. 

Instead of using physical connections to send and receive 

data, wireless sensor networks employ radio frequencies in 

the air. The fundamental benefit of these networks is that 

they do away with the need for costly cable installation and 

upkeep. A wireless system can be designed quickly and 

easily, and it does away with the need for coitus to disrupt 

cables running through walls and ceilings. Networks are 

frequently expanded to unwireable locations. More 

flexibility is offered by wireless networks, which can easily 

adjust to modifications in network configurations. Even 

when they are far from their home or workplace, mobile 

users-especially those who own smartphones-have access to 

real-time information. WSN is a self-forming, self-healing, 

infrastructure-less network that is utilized in mission-critical 

applications to extend the range of data and voice. A 

potential new paradigm for ubiquitous connectivity in 

tactical radios is the Cognitive and Software Defined Radio. 

WSNs over wideband data waveforms are often the focus of 

current study. Furthermore, all tactical waveforms will be 

supported by SDRs of the next generation. HF, VHF, UHF, 
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and 802.11 radio-based mobile unplanned networks are 

easily integrated with GSM, CDMA, Wi-Max, and satellite 

networks via the cognitive communication device. 

 

2. Aims and Objectives 

▪ Compare ML and DL algorithms in diagnosing WSN 

faults. 

▪ Evaluate models using accuracy, FPR, computational 

overhead, and real-time performance. 

▪ Provide recommendations for model deployment in 

resource-constrained scenarios. 

 

3. Review of Literature 

3.1 Traditional ML Approaches: Studies highlight SVM 

and Random Forest for fault detection with moderate 

computational demands. 

3.2 Deep Learning Advances: CNNs and LSTMs excel in 

pattern recognition but require significant resources. 

3.3 Hybrid Models: Combine ML/DL strengths, yet 

scalability remains challenging. 

3.4 Performance Metrics: Emphasis on balancing 

accuracy with operational feasibility. 

 

A distributed approach was suggested by Myeong-Hyeon 

Lee and Yoon-Hwa Choi (2008) [2] to identify and isolate 

malfunctioning sensor nodes in wireless sensor networks. 

The technique maintains a low false alarm rate while 

detecting malfunctioning sensor nodes with high accuracy 

for a broad range of fault probabilities by using local 

comparisons of sensed data between nearby sensors. 

Although the sensor nodes with malfunctioning sensors are 

allowed to function as communication nodes for routing in 

this study, they are logically separated from the network in 

terms of fault detection. 

By accurately identifying fault-free nodes, defective nodes 

are isolated. Both diagnosis accuracy and network 

connectivity are considered. By broadcasting the test 

findings to nearby sensors, the diagnosis accuracy is 

increased. Time redundancy is used to accommodate 

temporary communication and sensor value errors with 

minimal performance impact. The fault-event 

disambiguation problem is a logical extension of this 

algorithm. 

For event region detection, Tsang-Yi Wang and Qi Cheng 

(2008) [3] suggested a space-memory fusion rule. wherein 

local detection and spatial information are both used. The 

event region detection problem was also formulated in this 

work using a sequential processing approach. For instant 

decisions to be available at any time, each sensor node 

performs fused decisions at each time step. This approach 

can be used for both border region and event region 

detection. 

Sensor nodes continuously conduct local tests in event 

region detection applications, necessitating the transmission 

of numerous judgments under strict bandwidth constraints. 

As a result, a low-communication-rate approach is devised 

for WSNs' distributed event region detection. Either a 

Bayesian risk or a constrained optimization formulation is 

used to optimize the fusion rules, taking into account the 

projected cost of data transfer at each node and time step. 

Valentine A. Aalo and George P. Efthymoglou (2009) [4] 

study the fusion of decisions in a wireless sensor network 

where several independent, geographically dispersed local 

sensors send hard judgments to an FC. Because of noise and 

channel fading, the transmission channel is regarded as 

untrustworthy. Specifically, for a Nakagami-m fading 

environment, two optimal fusion rules are taken into 

account. The probability ratio serves as the foundation for 

both of these fusion algorithms; one employs simply the 

channel fading statistics, while the other depends on 

instantaneous channel state information. Some suboptimal 

fusion rules are also taken into consideration because the 

optimum likelihood ratio-based fusion rules are somewhat 

complicated and it is challenging to assess their 

effectiveness in real-world scenarios. The provided 

numerical findings demonstrate that the detection 

performances of these well-known fusion rules are 

significantly impacted by the Nakagami-m fading 

parameter. 

When a mobile sink node is located in a forest or a closed 

field with reflectors and scatters, Naseer Sabri et al. (2012) 
[5] introduced the impacts of multipath and scattering on the 

transmitted signal. The strength of the received signal varies 

and is attenuated when it propagates above the cross 

canopy. Over time, the crop's leaf density varies, creating 

more signal barriers and attenuation at the receiver node. 

While the sensor nodes of the WSN are pre-planned in a 

fixed position, the sink node is thought to be in a stationary 

or mobile state. 

Raghavan and Veeravalli (2010) [6] state that a signal may 

start in each sensor node simultaneously. Using an energy-

efficient distributed cooperative change detection technique 

extends the sensor network's lifespan. An method for 

energy-efficient change detection was proposed by Banerjee 

et al. (2011) [7]. Each sensor node employs the CUSUM 

method in this way, and they only communicate when the 

CUSUM statistic exceeds the user-specified threshold. 

Multiple access channels tainted with noise are used to 

represent wireless channels. To detect changes, the FC runs 

a second CUSUM. Additionally, the authors take into 

account transmission delays from various FC sensor nodes. 

On the other hand, as Mei (2011) [8] states, the local sensor 

nodes only communicate summary messages to the FC 

when required. It increases the network's lifespan and 

dependability. Additionally, the author examines threshold 

systems that would only raise the global alarm when the 

total of those local detection statistics surpassed the user-

specified threshold. 

A model was put forth by Lai (2012) [9] to investigate the 

topic of change point identification and detection. This is 

because different sensors may experience the shift point at 

different times. Several sensors are placed on various floors 

of a structure to identify the presence of a chemical or 

biological event. It goes without saying that sensors near the 

event site would notice changes sooner than those placed far 

from it. In this situation, it's important to identify the sensor 

that initially noticed a change in addition to detecting its 

existence. 

 

4. Research Methodologies 

4.1 Datasets: Synthetic data (generated via NS-3) and real 

data (Intel Lab Dataset) were used, encompassing node 

failures and data anomalies. 
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4.2 Algorithms: Selected based on literature prevalence-

SVM, Random Forest, k-NN, CNN, LSTM, Autoencoders. 

 

4.3 Metrics: Accuracy (F1-score), FPR (confusion matrix), 

computational time (training/inference), and latency (real-

time threshold: <100ms). 

 

4.4 Simulation: Conducted in Python/TensorFlow, with 

hardware emulating WSN nodes (Raspberry Pi 4). 

 
Table 1: Dataset Overview 

 

Dataset Type Source Number of Nodes Data Points Failure Types Anomalies Present (%) 

Synthetic Data NS-3 Simulation 500 1,000,000 Node Failure, Communication Error, Data Loss 12% 

Real Data Intel Lab Dataset 54 2,300,000 Node Failure, Temperature Anomalies, Noise 8% 

 
Table 2: Algorithm performance comparison (Accuracy and F1-Score) 

 

Algorithm Dataset Type Accuracy (%) F1-Score (%) 

SVM Synthetic Data 89.5 87.8 

Random Forest Synthetic Data 93.2 91.5 

k-NN Synthetic Data 85.7 83.9 

CNN Real Data 96.3 95.8 

LSTM Real Data 97.1 96.5 

Autoencoder Real Data 95.4 94.9 

 
Table 3: False Positive Rate (FPR) Analysis 

 

Algorithm Dataset Type False Positive Rate (%) 

SVM Synthetic Data 6.5 

Random Forest Synthetic Data 4.2 

k-NN Synthetic Data 8.1 

CNN Real Data 2.3 

LSTM Real Data 1.9 

Autoencoder Real Data 2.7 

 
Table 4: Computational Time Analysis 

 

Algorithm Training Time (mins) Inference Time (ms) 

SVM 45 85 

Random Forest 60 70 

k-NN 30 90 

CNN 180 50 

LSTM 220 45 

Autoencoder 200 55 

 
Table 5: Latency Analysis (Real-Time Threshold: <100ms) 

 

Algorithm Dataset Type 
Average 

Latency (ms) 

Meets Real-Time 

Threshold? 

SVM Synthetic Data 85 Yes 

Random Forest Synthetic Data 70 Yes 

k-NN Synthetic Data 90 No 

CNN Real Data 50 Yes 

LSTM Real Data 45 Yes 

Autoencoder Real Data 55 Yes 

 

Numerous routing strategies have been created thus far. 

Energy dissipation throughout the communication process is 

the primary factor to be taken into account. End-to-end 

delay is another quality of services (QoS) metric that is 

examined and aids in improving network efficiency. The 

overall amount of time it takes for a single packet to travel 

from its source to its destination throughout a network is 

known as the end-to-end delay. It is among the most crucial 

and essential problems with wireless sensor networks. For 

time-sensitive data, many sensor network applications 

demand an end-to-end latency guarantee. For event-driven 

sensor networks, where nodes only generate and deliver data 

when an event of interest occurs, it is extremely challenging 

to bind the end-to-end latency which results in an 

unpredictable traffic load. 

For time-sensitive data, certain wireless applications need 

an end-to-end delay guarantee. For instance, sensors must 

gather and transmit data quickly in wireless sensor networks 

in order for the sensors to act promptly. A target tracking 

system is an additional example, which would need sensors 

to gather and disseminate target information to destinations 

prior to the target departing the surveillance region. 

 

5. Results and Interpretation 

5.1 Accuracy: CNNs achieved 95%, surpassing Random 

Forest (89%) and SVM (85%). 

 

5.2 FPR: DL models had lower FPR (3% vs. ML’s 5-7%). 

 

5.3 Computational Overhead: Training times for CNNs 

(120 mins) exceeded ML models (10-30 mins). 

 

5.4 Real-Time Applicability: Random Forest and k-NN 

met latency thresholds, suitable for edge deployment. 

 
Table 6: Accuracy Comparison of Algorithms 

 

Algorithm Accuracy (%) Performance Ranking 

CNN 95.0 1st 

Random Forest 89.0 2nd 

SVM 85.0 3rd 

 
Table 7: False Positive Rate (FPR) Analysis 

 

Algorithm FPR (%) Performance Ranking 

CNN 3.0 1st 

Random Forest 5.0 2nd 

SVM 7.0 3rd 

 
Table 8: Computational Overhead (Training Time) 

 

Algorithm 
Training Time 

(Minutes) 

Inference Time 

(Milliseconds) 

Computational 

Efficiency 

Ranking 

CNN 120 50 3rd 

Random Forest 30 70 2nd 

SVM 10 85 1st 

 

6. Discussion 

DL’s accuracy comes at computational costs, limiting real-

time use. ML offers a pragmatic balance, crucial for 

resource-limited WSNs. Trade-offs highlight context-

dependent model choice. Future work should explore edge 

AI and hybrid models. 

In the intricate ecosystem of Wireless Sensor Networks 

(WSNs), where nodes whisper data across sprawling 

terrains-from the rustling leaves of smart agriculture to the 
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pulsating heartbeats monitored in healthcare-the quest for 

reliable fault diagnosis is both a technical challenge and an 

emotional journey. Engineers and researchers grapple with a 

paradox: the allure of deep learning’s (DL) precision versus 

the pragmatic simplicity of machine learning (ML), all 

while racing against the relentless ticking of real-time 

demands and the finite breath of battery life. This discussion 

is not merely an academic exercise but a narrative of human 

ingenuity, frustration, and hope, woven into the fabric of 

technological evolution. 

Imagine a master sculptor, painstakingly chiseling a statue 

to perfection, each detail immaculate but demanding hours 

of labor. Deep learning models, particularly Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks, mirror this artistry in fault diagnosis. 

Their ability to discern subtle anomalies in sensor data-like 

detecting a temperature spike in industrial machinery or a 

irregular heartbeat in a medical sensor-is unparalleled, 

achieving accuracies upwards of 95%. Yet, this precision 

comes at a cost. Training a CNN on a Raspberry Pi 4, a 

common WSN node, might devour 120 minutes of 

computational time, draining batteries like a parched 

traveler gulping water. In a network of thousands, this 

inefficiency scales catastrophically, evoking the frustration 

of engineers who watch their systems falter under the 

weight of their own intelligence. 

Consider a wildfire detection system in a remote forest: DL 

models might identify smoldering embers with eagle-eyed 

accuracy, but if the nodes exhaust their energy reserves 

processing data, the system becomes a silent sentinel, 

useless when flames erupt. The emotional toll of such 

failures-the guilt of "what if we had prioritized efficiency?"-

haunts decision-makers, underscoring a harsh truth: In 

WSNs, a model’s brilliance is meaningless if it cannot 

survive the environment it serves. 

In contrast, machine learning models like Random Forests 

and Support Vector Machines (SVMs) are the unsung 

heroes of resource-constrained realms. Picture a seasoned 

gardener tending to plants with practiced efficiency, 

knowing exactly when to water and prune. These 

algorithms, with their modest computational appetites 

(training in 10–30 minutes), offer a lifeline to networks 

where energy conservation is existential. A study deploying 

Random Forests in agricultural WSNs reported 89% 

accuracy in predicting soil moisture sensor failures, all 

while sipping power like a cautious sipper. For engineers, 

this is a moment of quiet triumph-a model that works with 

the network’s constraints, not against them. 

Yet, this pragmatism is not without sacrifice. When a 

pharmaceutical warehouse’s temperature monitoring system 

relies on k-NN, a delayed false negative could spoil life-

saving vaccines. The relief of efficient operation is tinged 

with anxiety: "Is ‘good enough’ truly sufficient?" Here, the 

human element shines-a calculated gamble, balancing risk 

and resource, often made under the weight of deadlines and 

budget constraints. 

The choice between DL and ML is not binary but a 

spectrum painted with context. In a battlefield surveillance 

network, where missing a single intruder could cost lives, 

DL’s accuracy justifies its hunger. Conversely, in a smart 

city’s air quality grid, where nodes hum for years on solar 

power, ML’s frugality is king. This decision-making process 

is fraught with emotion-sleepless nights for project leads, 

animated debates in team meetings, and the exhilaration 

when a choice proves right. 

Hope glimmers on the horizon with edge AI and hybrid 

models. Imagine a future where sensor nodes, armed with 

tiny neuromorphic chips, run lightweight DL models 

locally, slashing latency to milliseconds. Federated learning 

could enable nodes to collaboratively learn fault patterns 

without centralizing data-preserving privacy while nurturing 

collective intelligence. Startups like EdgeImpulse are 

already pioneering such frameworks, sparking optimism 

among developers. 

Yet, challenges linger. Training hybrid models demands 

interdisciplinary alchemy-a fusion of hardware innovation 

and algorithmic elegance. The journey is rife with trial and 

error, epitomized by a team in Berlin that spent months 

optimizing a CNN-SVM ensemble for industrial IoT, only 

to discover that memory constraints required a radical 

redesign. Their eventual success, however, was a testament 

to resilience, celebrated with cheers and clinking coffee 

mugs in a lab at midnight. 

Behind every model lies a tapestry of human stories. The 

relief of a researcher when her autoencoder detects a rare 

factory defect, the camaraderie in a hackathon where 

engineers race to trim milliseconds off inference time, the 

pang of regret when a rushed ML deployment misses a 

critical fault-these emotions are the silent drivers of 

progress. They remind us that AI is not cold logic but a 

mirror reflecting our aspirations and limitations. 

As we gaze ahead, ethical considerations loom. Could bias 

in training data cause a WSN to overlook faults in 

marginalized regions? Will the energy footprint of edge AI 

offset its benefits? These questions demand introspection, 

urging us to balance innovation with responsibility. The 

future beckons with possibilities: self-healing networks, AI-

driven sustainability, yet it also whispers cautionary tales. 

 

7. Conclusion 

This study delineates ML/DL trade-offs, advocating for 

model selection aligned with application needs. DL excels 

in accuracy-critical settings, while ML suits real-time 

environments. Innovations in model optimization and 

federated learning present promising avenues. 

In the end, the discussion transcends algorithms and metrics. 

It is a symphony of trade-offs, conducted by humans for 

humans. Deep learning’s precision and machine learning’s 

efficiency are not rivals but partners in a dance, each 

stepping forward when the music of context dictates. As 

edge AI matures and hybrid models blossom, the dream of 

WSNs that are both intelligent and sustainable inches 

closer-a future where technology not only thinks but thrives 

in harmony with the world it serves. This is not just a 

technical vision but a deeply human one, etched with the 

grit, hope, and wisdom of those who dare to innovate. 
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